Skip to main content
Log in

Efficient protocols for CAPS-based mapping inArabidopsis

  • Commentary
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Positional cloning continues to be an essential method for gene identification and characterisation. The introduction of PCR-based techniques such as Amplified Fragment Length Polymorphism (AFLP), Simple Sequence Length Polymorphisms (SSLP) and Cleaved Amplified Polymorphic Sequences (CAPS) has greatly increased the efficiency of gene mapping in arabidopsis. To develop the CAPS marker approach further, we have altered several critical mapping parameters. Efficiency was improved by using a small volume of dry seed for DNA extraction instead of the commonly used vegetative tissue. Reproducibility of PCR reactions was enhanced by faster and reduced protocols for PCR and restriction enzyme digestion and optimisation of PCR conditions for over 50 CAPS primer pairs. Finally, the density of genetic markers was increased by providing polymorphic information for all CAPS markers in arabidopsis ecotypes Wassilewskija (Ws), Columbia (Col) and Cape Verde Islands (Cvi).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFLP:

amplified fragment length polymorphism

CAPS:

cleaved amplified polymorphic sequences

RFLP:

restriction fragment length polymorphism

SSLP:

simple sequence length polymorphism. Ecotypes forArabidopsis thaliana

B:

Bensheim

Col:

Columbia

Cvi:

Cape Verde Islands

Ler:

Landsbergerecta

Nd:

Niederzenz

No:

Nossen

R:

RLD

Ws:

Wassilewskija

References

  • Alonso-Blanco C and Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5: 22–29.

    Article  PubMed  CAS  Google Scholar 

  • Bell CJ and Ecker JR (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19: 137–144.

    Article  PubMed  CAS  Google Scholar 

  • Chang C, Bowman JL, DeJohn AW, Lander ES and Meyerowitz EM (1988) Restriction fragment length polymorphism linkage map forArabidopsis thaliana. Proc Natl Acad Sci USA 85: 6856–6860.

    Article  PubMed  CAS  Google Scholar 

  • Copenhaver GP, Nickel K, Kuromori T, Benito MI, Kaul S, Lin X, Bevan M, Murphy G, Harris B, Parnell LD, McCombie WR, Martienssen RA, Marra M and Preuss D (1999) Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286: 2468–2474.

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J and Hicks JB (1983) A plant DNA minipreparation: Version II. Plant Mol Biol Rep 1(4): 19–21.

    Article  CAS  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C and Dangl JL (1997) A novel zinc finger protein is encoded by the ArabidopsisLSD1 gene and functions as a negative regulator of plant cell death. Cell 88: 685–694.

    Article  PubMed  CAS  Google Scholar 

  • Errampalli D, Patton D, Castle L, Mickelson L, Hansen K, Schnall J, Feldmann K and Meinke D (1991) Embryonic lethals and T-DNA insertional mutagenesis in Arabidopsis. Plant Cell 3: 149–157.

    PubMed  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis—mutational spectrum. Plant J 1: 71–82.

    Article  CAS  Google Scholar 

  • Feldmann KA, Marks MD, Christianson ML and Quatrano RS (1989) A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagenesis. Science 243: 1351–1354.

    Article  PubMed  CAS  Google Scholar 

  • Glazebrook J, Drenkard E, Preuss D and Ausubel FM (1998) Use of cleaved amplified polymorphic sequences (CAPS) as genetic markers inArabidopsis thaliana. In: Martéinez-Zapater JM and Salinas J (eds), Methods in Molecular Biology, Vol. 82: Arabidopsis Protocols, pp 173–182. Humana Press, Totowa, New Jersey.

    Chapter  Google Scholar 

  • Konieczny A and Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using codominant ecotype-specific PCR-based markers. Plant J 4: 403–410.

    Article  PubMed  CAS  Google Scholar 

  • Kononov ME, Bassuner B and Gelvin SB (1997) Integration of T-DNA binary vector ‘backbone’ sequences into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11: 945–957.

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M and Hanhart C (1983) Linkage marker stocks ofArabidopsis thaliana. Arabidopsis Inf Serv 20: 89–92.

    Google Scholar 

  • Koornneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ and Feenstra WJ (1983) Linkage map ofArabidopsis thaliana. J Hered 74: 265–272.

    Google Scholar 

  • Lister C and Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers inArabidopsis thaliana. Plant J 4: 745–750.

    Article  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Lister C, Dean C and Whittier RF (1996) Isolation and mapping of a new set of 129 RFLP markers inArabidopsis thaliana using recombinant inbred lines. Plant J 10: 733–736.

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W, Gillmor CS and Scheible WR (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol.123: 795–805.

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz EM and Pruitt RE (1985)Arabidopsis thaliana and plant molecular genetics. Science 229: 1214–1218.

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD and Amasino RM (1998) A robust method for detecting single-nucleotide changes as polymorphic markers by PCR. Plant J 14: 381–385.

    Article  PubMed  CAS  Google Scholar 

  • Michaels SD, John MC and Amasino RM (1994) Removal of polysaccharides from plant DNA by ethanol precipitation. BioTechniques 17: 274–276.

    PubMed  CAS  Google Scholar 

  • Nam HG, Giraudat J, Denboer B, Moonan F, Loos WDB, Hauge BM and Goodman HM (1989) Restriction fragement length polymorphism linkage map ofArabidopsis thaliana. Plant Cell 1: 699–705.

    PubMed  CAS  Google Scholar 

  • Neff MM, Neff JD, Chory J and Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications inArabidopsis thaliana genetics. Plant J 14: 387–392.

    Article  PubMed  CAS  Google Scholar 

  • Patton DA, Franzmann LH and Meinke DW (1991) Mapping genes essential for embryo development inArabidopsis thaliana. Mol Gen Genet 227: 337–347.

    Article  PubMed  CAS  Google Scholar 

  • Reiter RS, Williams JG, Feldmann KA, Rafalski JA, Tingey SV and Scolnik PA (1992) Global and local genome mapping inArabidopsis thaliana by using recombinant inbred lines and random amplified polymorphic DNAs. Proc Natl Acad Sci USA 89: 1477–1481.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Speulman E, Metz PLJ, vanArkel G, Hekkert PTL, Stiekema WJ and Pereira A (1999) A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11: 1853–1866.

    PubMed  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plantArabidopsis thaliana. Nature 408: 796–815.

    Article  Google Scholar 

  • Thorlby G, Veale E, Butcher K and Warren G (1999) Map positions ofSFR genes in relation to other freezing-related genes ofArabidopsis thaliana. Plant J 17: 445–452.

    Article  PubMed  CAS  Google Scholar 

  • Tissier AF, Marillonnet S, Klimyuk V, Patel K, Torres MA, Murphy G and Jones JD (1999) Multiple independent defective suppressor-mutator transposon insertions in Arabidopsis: a tool for functional genomics. Plant Cell 11: 1841–1852.

    PubMed  CAS  Google Scholar 

  • Wenck A, Czako M, Kanevski I and Marton L (1997) Frequent collinear long transfer of DNA inclusive of the whole binary vector during Agrobacterium-mediated transformation. Plant Mol Biol 34: 913–922.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumbusch, L.O., Sundal, I.K., Hughes, D.W. et al. Efficient protocols for CAPS-based mapping inArabidopsis . Plant Mol Biol Rep 19, 137–149 (2001). https://doi.org/10.1007/BF02772156

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02772156

Key words

Navigation