Skip to main content
Log in

Science of complexity: Phenomenological basis and possibility of application to problems of chemical engineering

  • Conference
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The basic principles of flicker-noise spectroscopy, a new method of analysis of chaotic time and space series, are presented. This method can be considered the phenomenological basis of the currently developing science of complexity, which deals with open nonlinear dissipative systems of various essences-real natural objects. The method is based on the postulate that irregularities in measured dynamic variables are of crucial informational significance in accepting a new hypothesis of scale invariance. In this approach, the power spectra and the structure functions of different orders are governed by irregularities of various types, namely, dynamic spikes and jumps of measured variables. For processes under investigation, the expressions for both the power spectra and the structure functions prove to be identical (invariant) at each of the spatiotemporal levels of the system. The introduced phenomenological parameters completely and unambiguously characterize the state of the evolving system, thus serving as the “passport data” of the system. The possibility of applying the proposed methodology to solving topical problems of chemical engineering is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Himmelblau, D.,Process Analysis by Statistical Methods, New York; Wiley, 1970. Translated under the titleAnaliz protsessov statisticheskimi metodami, Moscow: Mir, 1973.

    Google Scholar 

  2. Aerov, M.E. and Todes, O.M.,Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym sloem (Hydraulic and Thermophysical Principles of Operation of Fixed and Fluidized-Bed Reactors), Leningrad: Khimiya, 1968.

    Google Scholar 

  3. Frank-Kamenetskii, D.A.,Diffuziya i teploperedacha v khimicheskoi kinetike (Diffusion and Heat Transfer in Chemical Kinetics), Moscow: Nauka, 1986.

    Google Scholar 

  4. Kaminskii, V.A., Rabinovich, A.B., and Egorov, M.V., Macrokinetics of Diffusion-Controlled Processes,Zh. Fiz. Khim., 1999, vol. 73, no. 2, p. 245.

    Google Scholar 

  5. Cassanallo, M., Larachi, F., Legros, R., and Chaouki, J., Solids Dynamics from Experimental Trajectory Time-Series of a Single Particle Motion in Gas-Spouted Beds,Chem. Eng. Sci., 1999, vol. 54, p. 2545.

    Article  Google Scholar 

  6. Chen, J., Kemoun, A., Al-Dahhan, M.H.,et al., Comparative Hydrodynamics Study in a Bubble Column Using Computer-Automated Radioactive Tracking (CARPT)/Computed Tomography (CT) and Particle Image Velocimetry (PIV),Chem. Eng. Sci., 1999, vol. 54, p. 2199.

    Article  CAS  Google Scholar 

  7. Mudde, R.F., Harteveld, W.K., van den Akker, H.E.A.,et al., Gamma Radiation Densitometry for Studying the Dynamics of Fluidized Beds,Chem. Eng. Sci., 1999, vol. 54, p. 2047.

    Article  CAS  Google Scholar 

  8. Tayebi, D., Svendsen, H.F., Grislingas, A.,et al., Dynamics of Fluidized Reactors. Development and Application of a New Multi-Fiber Optic Probe,Chem. Eng. Sci., 1999, vol. 54, p. 2113.

    Article  CAS  Google Scholar 

  9. Timashev, S.F.,Fizikokhimiya membrannykh protsessov (Physical Chemistry of Membrane Processes), Moscow: Khimiya, 1988.

    Google Scholar 

  10. Cornelissen, A.E.,A Design Procedure for Spiral Wound Membrane Modulus, Twente: Twente Univ., 1994.

    Google Scholar 

  11. Shapovalov, S.V. and Tyurin, V.I., Mathematical Model of Flow and Mass Transfer in an Electrochemical Cell with Eddy Liquid Flow,Elektrokhimiya, 1996, vol. 32, no. 2, p. 235.

    Google Scholar 

  12. Bellhouse, B.J. and Millward, H.R.,Proc. Int. Conf. “Euromembrane’95,” Bath, 1995, vol. 1, p. 3.

    Google Scholar 

  13. Shaposhnik, V.A.,Kinetika elektrodializa (Electrodialysis Kinetics), Voronezh: Voronezh. Univ., 1989.

    Google Scholar 

  14. Zabolotskii, V.I. and Nikonenko, V.V.,Perenos ionov v membranakh (Membrane Transport of Ions), Moscow: Nauka, 1996.

    Google Scholar 

  15. Berge, P., Pomeau, Y., and Vidal, C,L’ordre dans le chaos: Vers une approche déterministe de la turbulence, Paris: Hermann, 1984. Translated under the titlePoryadok v khaose: O deterministskom podkhode k turbulentnosti, Moscow: Mir, 1991.

    Google Scholar 

  16. Kantz, H. and Schreiber, T.,Nonlinear Time Series Analysis, Cambridge: Cambridge Univ. Press, 1997.

    Google Scholar 

  17. Hegger, R., Kantz, H., and Schreiber, T., Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package,Chaos, 1999, vol. 9, no. 2, p. 413.

    Article  Google Scholar 

  18. Slin’ko, M.G., Fundamentals of Mathematical Modeling of Industrial Chemical Processes,Rasshirennye tezisy lektsii pervoi sessii mezhdunarodnoi shkoly “Inzhenerno-khimicheskaya nauka dlya peredovykh tekhnologii” (Expanded Theses of the Lectures at the First Session of the Int. School “Chemical Engineering Science for Advanced Technologies”), Moscow: Nauchnoissled. Fiz.-Khim. Inst. im. L.Ya. Karpova, 1994, p. 109.

    Google Scholar 

  19. Timashev, S.F., Dynamic Methods of the Analysis of Physicochemical and Industrial Chemical Systems,Tr. vtoroi sessii mezhdunarodnoi shkoly “Inzhenernokhimicheskaya nauka dlya peredovykh tekhnologii” (Proc. Second Session of the Int. School “Chemical Engineering Science for Advanced Technologies”), Moscow: Nauchno-issled. Fiz.-Khim. Inst. im. L.Ya. Karpova, 1996, p. 438.

    Google Scholar 

  20. Timashev, S.F., Flicker Noise as an Indicator of the Time Arrow: Deterministic Chaos Theory Applied to the Analysis of Time Series,Ross. Khim. Zh., 1997, vol. 41, no. 3, p. 17.

    CAS  Google Scholar 

  21. Timashev, S.F., Principles of the Evolution of Nonlinear Systems (Looking for a Language as a Means of Intercourse with Nature),Ross. Khim. Zh., 1998, vol. 42, no. 3, p. 18.

    CAS  Google Scholar 

  22. Timashev, S.F., Complexity and Evolutionary Law for Natural Systems: A “New Dialogue” with Nature—In Looking for a Language as a Means of Intercourse with Nature,Ann. New York Acad. Sci, 1999, vol. 879, p. 129.

    Article  Google Scholar 

  23. Timashev, S.F., Budnikov, Ye.Yu., Kostuchenko, I.G.,et al., Evolution of Dynamical Dissipative Systems as a Temporal “Colour” Fractal, inMathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, New York: Plenum, 1999, p. 17.

    Google Scholar 

  24. Parkhutik, V., Budnikov, Ye., and Timashev S., Application of Flicker-Noise Spectroscopy in Studies of Porous Silicon Growth and Properties,Mat. Sci. Eng., 2000, vol. B69/70, p. 53.

    Google Scholar 

  25. Budnikov, E.Yu., Maksimychev, A.V., Kolyubin, A.V.,et al., Wavelet Analysis in the Study of the Nature of the Overcurrent in an Electrochemical System with a Cation-Exchange Membrane,Zh. Fiz. Khim., 1999, vol. 73, no. 2, p. 198.

    CAS  Google Scholar 

  26. Budnikov, E.Yu., Kozlov, S.V., Kolyubin, A.V., and Timashev, S.F., Analysis of Fluctuation Phenomena during Hydrogen Release at a Platinum Electrode,Zh. Fiz. Khim., 1999, vol. 73, no. 3, p. 530.

    CAS  Google Scholar 

  27. Timashev, S.F., Bessarabov, D.G., Sanderson, R.D.,et al., Description of Non-Regular Membrane Structures: A Novel Phenomenological Approach,J. Membr. Sci., 2000, vol. 170, no. 2, p. 191.

    Article  CAS  Google Scholar 

  28. Timashev, S.F., A New Dialogue with Nature, inStochastic and Chaotic Dynamics in the Lakes, Broomhead, D.E., Luchinskaya, E.A., McClintock, P.V.E., and Mullin, T., Eds., New York: Am. Inst. Phys., 2000, p. 238.

    Google Scholar 

  29. Timashev, S.F., Self-Similarity in Nature, inStochastic and Chaotic Dynamics in the Lakes, Broomhead, D.E., Luchinskaya, E.A., McClintock, P.V.E., and Mullin, T., Eds., New York: Am. Inst. Phys., 2000, p. 562.

    Google Scholar 

  30. Vladimirov, V.S.,Uravneniya matematicheskoi fiziki (Mathematical Physics Equations), Moscow: Nauka, 1967.

    Google Scholar 

  31. http://www.sdu.dk/tvf/statdem/Events/Chaos/chaos.html.

  32. Prigogine, I. and Stengers, I.,Order out of Chaos: Man’s New Dialogue with Nature, Toronto: Bantam Books, 1984. Translated under the titlePoryadok iz khaosa: Novyi dialog cheloveka s Prirodoi, Moscow: Progress, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Reported at the Conf. “Liquid-Phase Systems and Nonlinear Processes in Chemistry and Chemical Technology,” Ivanovo, 1999.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Timashev, S.F. Science of complexity: Phenomenological basis and possibility of application to problems of chemical engineering. Theor Found Chem Eng 34, 301–312 (2000). https://doi.org/10.1007/BF02758677

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02758677

Keywords

Navigation