Skip to main content
Log in

Local accumulations of B-50/GAP-43 evoke excessive bleb formation in PC12 cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

B-50 (GAP-43) is an axonal, plasma membrane-associated protein involved in growth cone morphology and function. We have conducted immunocytochemical, electron microscopic, and time-lapse experiments to visualize morphological consequences of local accumulations of B-50 at the plasma membrane of B-50-transfected PC-B2 cells, a clonal PC12 cell line with very low expression of endogenous B-50. The distribution of the transfected B-50 within these cells was inhomogeneous. At sites where the B-50 concentration was locally increased up to twofold, numerous filopodia were present in growth cone-like, substrate-attached regions. When local B-50 concentrations were even higher (up to 6.2-fold), blebs were formed, often containing vesicular structures, heavily decorated with B-50 immunoreactivity. Double labeling with f-actin binding phalloidin revealed that local B-50 accumulations were accompanied by increased actin filament concentrations. Colocalization of B-50 with actin filaments was prominent in filopodia, but was virtually absent in blebs, suggesting a disconnection of the bleb plasma membrane from the actin cytoskeleton. We conclude that B-50 evokes distinct effects on cell-surface activity in PC12 cells depending on its local concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EM:

electron microscopy

EGFP:

enhanced green fluorescent protein

f-actin:

filamentous actin

FITC:

fluorescein isothiocyanate

GAP:

growth-associated protein

NGF:

nerve growth factor

PBS:

phosphate-buffered saline

PC12:

pheochromocytoma 12

PKC:

protein kinase C

References

  1. Skene J. H. and Willard M. B. (1981) Characteristics of growth-associated polypeptides in regenerating toad retinal ganglion cell axons.J. Neurosci. 1, 419–426.

    PubMed  CAS  Google Scholar 

  2. Skene J. H. P. (1989) Axonal growth-associated proteins.Ann. Rev. Neurosci. 12, 127–156.

    Article  PubMed  CAS  Google Scholar 

  3. Aarts L. H. J., Schrama L. H., Hage W. J., Bos J. L., Gispen W. H., and Schotman P. (1998) B-50/GAP-43-induced formation of filopodia depends on Rho-GTPase.Mol. Biol. Cell 9, 1279–1292.

    PubMed  CAS  Google Scholar 

  4. Strittmatter S. M., Valenzuela D., and Fishman M. C. (1994) An amino-terminal domain of the growth-associated protein GAP-43 mediates its effects on filopodial formation and cell spreading.J. Cell Sci. 107, 195–204.

    PubMed  CAS  Google Scholar 

  5. Verhaagen J., Hermens W. T. J. M. C., Oestreicher A. B., Gispen W. H., Rabkin S. D., Pfaff D. W., et al. (1994) Expression of the growth-associated protein B-50/GAP43 via a defective herpes-simplex virus vector results in profound morphological changes in non-neuronal cells.Mol. Brain Res. 26, 26–36.

    Article  PubMed  CAS  Google Scholar 

  6. Wiederkehr A., Staple J., and Caroni P. (1997) The motility-associated proteins GAP-43, MAR-CKS, and CAP-23 share unique targeting and surface activity-inducing properties.Exp. Cell Res. 236, 103–116.

    Article  PubMed  CAS  Google Scholar 

  7. Zuber, M. X., Goodman D. W., Karns, L. R., and Fishman M. C. (1989) The neuronal growth-associated protein GAP-43 induces filopodia in non-neuronal cells.Science 244, 1193–1195.

    Article  PubMed  CAS  Google Scholar 

  8. Morton A. J. and Buss T. N. (1992), Accelerated differentiation in response to retinoic acid after retrovirally mediated gene transfer of GAP-43 into mouse neuroblastoma cells.Eur. J. Neurosci. 4, 910–916.

    Article  PubMed  Google Scholar 

  9. Yankner B. A., Benowitz L. I., Villa-Komaroff L., and Neve R. L. (1990) Transfection of PC12 cells with the human GAP-43 gene: effects on neurite outgrowth and regeneration.Mol. Brain Res. 7, 39–44.

    Article  PubMed  CAS  Google Scholar 

  10. Kumagai C., Tohda M., Isobe M., and Nomura Y. (1992) Involvement of growth-associated protein-43 with irreversible neurite outgrowth by dibutyryl cyclic AMP and phorbol ester in NG 108-15 cells.J. Neurochem. 59, 41–47.

    Article  PubMed  CAS  Google Scholar 

  11. Aigner L. and Caroni P. (1993) Depletion of 43-kD growth-associated protein in primary sensory neurons leads to diminished formation and spreading of growth cones.J. Cell Biol. 123, 417–429.

    Article  PubMed  CAS  Google Scholar 

  12. Aigner L. and Caroni, P. (1995) Absence of persistent spreading, branching, and adhesion in GAP-43-depleted growth cones.J. Cell Biol. 128, 647–660.

    Article  PubMed  CAS  Google Scholar 

  13. Jap Tjoen San E. R. A., Schmidt-Michels M. H., Oestreicher A. B., Gispen W. H., and Schotman P. (1992) Inhibition of nerve growth factor-induced B-50/GAP-43 expression by antisense oligomers interferes with neurite outgrowth of PC12 cells.Biochem. Biophys. Res. Commun. 187, 839–846.

    Article  PubMed  CAS  Google Scholar 

  14. Shea T. B., Perrone-Bizzozero, N. I., Beermann M. L., and Benowitz L. I. (1991) Phospholipid-mediated delivery of anti-GAP-43 antibodies into neuroblastoma cells prevents neuritogenesis.J. Neurosci. 11, 1685–1690.

    PubMed  CAS  Google Scholar 

  15. Greene L. A., Sobeih M. M., and Teng K. K. (1991) Methodologies for the culture and experimental use of the PC12 rat pheochromocytoma cell line, in,Culturing Nerve Cells (Banker G. and Goslin K., eds.) Massachuchetts Institute of Technology, Cambridge, MA, pp. 207–226.

    Google Scholar 

  16. Van Hooff C. O. M., Holthuis J. C. M., Oestreicher A. B., Boonstra J., De Graan P. N. E., and Gispen W. H. (1989) Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells.J. Cell Biol. 108, 1115–1125.

    Article  PubMed  Google Scholar 

  17. Nielander H. B., French P., Oestreicher A. B., Gispen W. H., and Schotman P. (1993) Spontaneous morphological changes, by overexpression of the growth-associated protein B-50/GAP-43 in a PC12 cell line.Neurosci. Lett. 162, 46–50.

    Article  PubMed  CAS  Google Scholar 

  18. Jap Tjoen San E. R. A., Van Rozen A. J., Nielander H. B., Oestreicher A. B., Gispen W. H., and Schotman P. (1995) Expression levels of B-50/GAP-43 in PC12 cells are decisive for the complexity of their neurites and growth cones.J. Mol. Neurosci. 6, 185–200.

    Article  PubMed  CAS  Google Scholar 

  19. Baetge E. E. and Hammang J. P. (1991) Neurite outgrowth in PC12 cells deficient in GAP-43.Neuron 6, 21–30.

    Article  PubMed  CAS  Google Scholar 

  20. Skene J. H. P. and Virág I. (1989) Posttranslational membrane attachment and dynamic fatty acid acylation of a neuronal growth cone protein, GAP-43.J. Cell Biol. 108, 613–624.

    Article  PubMed  CAS  Google Scholar 

  21. Aarts L. H. J., Van der Linden J. A. M., Hage W. J., Van Rozen A. J., Oestreicher A. B., Gispen W. H., et al. (1995) N-terminal cysteines essential for Golgi sorting of B-50 (GAP-43) in PC12 cells.Neuroreport 6, 969–972.

    Article  PubMed  CAS  Google Scholar 

  22. Liu Y., Chapman E. R., and Storm D. R. (1991) Targeting of neuromodulin (GAP-43) fusion proteins to growth cones in cultured rat embryonic neurons.Neuron 6, 411–420.

    Article  PubMed  CAS  Google Scholar 

  23. Liu Y., Fisher D. A., and Storm D. R. (1994) Intracellular sorting of neuromodulin (GAP-43) mutants modified in the membrane targeting domain.J. Neurosci.,14, 5807–5817.

    PubMed  CAS  Google Scholar 

  24. Zuber M. X., Strittmatter S. M., and Fishman M. C. (1989) A membrane-targeting signal in the amino terminus of the neuronal protein GAP-43.Nature 341, 345–348.

    Article  PubMed  CAS  Google Scholar 

  25. Widmer F. and Caroni P. (1993) Phosphorylation-site mutagenesis of the growth-associated protein GAP-43 modulates its effects on cell spreading and morphology.J. Cell Biol. 120, 503–512.

    Article  PubMed  CAS  Google Scholar 

  26. He Q., Dent E. W., and Meiri K. F. (1997) Modulation of actin filament behavior by GAp-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase, C site.J. Neurosci. 17, 3515–3524.

    PubMed  CAS  Google Scholar 

  27. Hens J. J. H., Benfenati F., Nielander H. B., Valtorta F., Gispen W. H., and De Graan P. N. E. (1993) B-50/GAP-43 binds to actin filaments without affecting actin, polymerization and filament organization.J. Neurochem. 61, 1530–1533.

    Article  PubMed  CAS  Google Scholar 

  28. Strittmatter S. M., Vartanian T., and Fishman M. C. (1992) GAP-43 as a plasticity protein in neuronal form and repair.J. Neurobiol. 23, 507–520.

    Article  PubMed  CAS  Google Scholar 

  29. Mercken M., Lubke U., Vandermeeren M., Gheuens J., and Oestreicher A. B. (1992) Immunocytochemical detection of the growth associated protein B-50 by newly characterized monoclonal antibodies in human brain and muscle.J. Neurobiol. 23, 309–321.

    Article  PubMed  CAS  Google Scholar 

  30. Danscher G. (1981) Localization of gold in biological tissue. A photochemical method for light and electronmicroscopyHistochemistry 71, 81–88.

    Article  PubMed  CAS  Google Scholar 

  31. Meiri K. F., Hammang J. P., Dent E. W., and Baetge E. E. (1996) Mutagenesis of ser41 to ala inhibits the association of GAP-43 with the membrane skeleton of GAP-43-deficient PC12B cells: effects on cell adhesion and the composition of neurite cytoskeleton and membrane.J. Neurobiol. 29, 213–232.

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka E. and Sabry J. (1995) Making the connection: Cytoskeletal rearrangements during growth cone guidance.Cell 83, 171–176.

    Article  PubMed  CAS  Google Scholar 

  33. Cunningham C. C. (1995) Actin polymerization and intracellular solvent flow in cell surface blebbing.J. Cell Biol. 129, 1589–1599.

    Article  PubMed  CAS  Google Scholar 

  34. Bridgman P. C., Lewis A. K., and Victor J. C. (1993) Comparison of the ability of freeze etch and freeze substitution to preserve actin filament structure.Microsc Res. Tech. 24, 385–394.

    Article  PubMed  CAS  Google Scholar 

  35. Aarts L. H. J., Verkade P., Van Dalen J. J. W., Van Rozen A. J., Gispen W. H., Schrama L. H., et al. (1999) B-50/GAP-43 potentiates cytoskeletal reorganization in raft domains.Mol. Cell. Neurosci. 14, 85–97.

    Article  PubMed  CAS  Google Scholar 

  36. Simons K. and E. Ikonen (1997) Sphingolipid-cholesterol rafts in membrane trafficking and signalling in raft domains.Nature 387, 569–572.

    Article  PubMed  CAS  Google Scholar 

  37. Brown D. A. and E. London (1998) Functions of lipid rafts in biological membranes.Annu. Rev. Cell Dev. Biol. 14, 111–136.

    Article  PubMed  CAS  Google Scholar 

  38. Maekawa S., Kumanogoh H., Funatsu N., Takei N., Inoue K., Endo Y., et al. (1997) Identification of NAP-22 and GAP-43 (neuromodulin) as major protein components in a Triton insoluble low density fraction of rat brain.Biochim. Biophys. Acta 1323, 1–5.

    Article  PubMed  CAS  Google Scholar 

  39. Arni, S., Keilbaugh S. A., Ostermeyer A. G., and Brown D. A. (1998) Association of GAP-43 with detergen-resistant membranes requires two palmitoylated cysteine residues.J. Biol. Chem. 273, 28478–28485.

    Article  PubMed  CAS  Google Scholar 

  40. Mackay D. J. G., Nobes C. D. and Hall A. (1995) The Rho's progress: A potential role during neuritogenesis for the Rho family of GTPases.Trends Neurosci. 18, 496–501.

    Article  PubMed  CAS  Google Scholar 

  41. Symons M. (1996) Rho family GTPases: The cytoskeleton and beyond.Trends Biochem. Sci. 21, 178–181.

    Article  PubMed  CAS  Google Scholar 

  42. Mills J. C., Stone N. L., Erhardt J. and Pittman R. N. (1998) Apoptotic membrane blebbing is regulated by myosin light chain phosphorylation.J. Cell Biol. 140, 627–636.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

During the preparation of this manuscript, we lost our colleague A. Beate Oestreicher after a courageous struggle against a fatal disease. With her we lost a very engaging and warm coworker and friend who is deeply missed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aarts, L.H.J., Verkade, P., Schrama, L.H. et al. Local accumulations of B-50/GAP-43 evoke excessive bleb formation in PC12 cells. Mol Neurobiol 20, 17–28 (1999). https://doi.org/10.1007/BF02741362

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02741362

Index Entries

Navigation