Skip to main content
Log in

Electron microscopic and confocal laser scanning microscopic observation of subcellular organelles and pituitary hormone mRNA: Application of ultrastructuralIn situ hybridization and immunohistochemistry to the pathophysiological studies of pituitary cells

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Nonradioisotopic electron microscopic (EM)in situ hybridization (ISH) (EM-ISH) with biotinylated oligonucleotide probes is utilized for the ultrastructural visualization of pituitary hormone mRNA in rat pituitary cells. EM-ISH is an important tool for clarifying the intracellular localization of mRNA and the exact site of specific hormone synthesis on the rough endoplasmic reticulum. The simultaneous visualization of mRNA and encoded protein in the same cell using preembedding EM-ISH and subsequent postembedding immunoreaction with protein A colloidal gold complex can provide an important clue for elucidating the intracellular correlation of mRNA translation and secretion of translated protein. Another focus of this review is the utilization of a recently developed imaging system of confocal laser scanning microscopy (CLSM). The combination of CLSM and image analysis system (IAS) enables us to visualize an individual dimensional image of the intracellular distribution of mRNA and subcellular organelles successfully at any optional cross sections of light microscopic ISH studies, and can be another useful tool for the ultrastructural ISH study of mRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guitteny AF, Block B. Ultrastructural, detection of the vasopressin messenger RNA in the normal and Brattleboro rat. Histochemistry 92:277–281, 1989.

    Article  PubMed  CAS  Google Scholar 

  2. Wolber RA, Beals TF, Maassab HF. Ultrastructural localization of Herpes simplex virus RNA by in situ hybridization. J Histochem Cytochem 37:97–104, 1989.

    PubMed  CAS  Google Scholar 

  3. Trembleau A, Calas A, Fevre-Montange M. Ultrastructural localization of oxytocin mRNA in the rat hypothalamus by in situ hybridization using a synthetic oligonucleotide. Brain Res Mol Brain Res 8:37–45, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Pomeroy ME, Lawrence JB, Singer RH, Billings-Gagliardi S. Distribution of myosin heavy chain mRNA in embryonic muscle tissue visualized by ultrastructural in situ hybridization. Dev Biol 143:58–67, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Le Guellec D, Trembleau A, Pechoux C, Gossard F, Morel G. Ultrastructural nonradioactive in situ hybridization of GH mRNA in rat pituitary gland: preembedding vs ultrathin frozen sections vs postembedding. J Histochem Cytochem 40:979–986, 1992.

    PubMed  Google Scholar 

  6. Matsuno A, Ohsugi Y, Utsunomiya H, Takekoshi S, Osamura RY, Watanabe K, Teramoto A. Ultrastructural distribution of growth hormone, prolactin mRNA in normal rat pituitary cells: A comparison between preembedding and postembedding methods. Histochemistry 102:265–270, 1994.

    Article  PubMed  CAS  Google Scholar 

  7. Matsuno A, Teramoto A, Takekoshi S, Utsunomiya H, Ohsugi Y, Kishikawa S, Osamura RY, Kirino T, Lloyd RV. Application of biotinylated oligonucleotide probes to the detection of pituitary hormone mRNA using Northern blot analysis, in situ hybridization at light and electron microscopic levels. Histochem J 26:771–777, 1994.

    PubMed  CAS  Google Scholar 

  8. Matsuno A, Ohsugi Y, Utsunomiya H, Takekoshi S, Sanno N, Osamura RY, Watanabe K, Teramoto A, Kirino T. Changes in the ultrastructural distribution of prolactin and growth hormone mRNAs in pituitary cells of female rats after estrogen and bromocriptine treatment, studied using in situ hybridization with biotinylated oligonucleotide probes. Histochem Cell Biol 104:37–45, 1995.

    Article  PubMed  CAS  Google Scholar 

  9. Morel G, Chabot JG, Gossard F, Heisler S. Is atrial natriuretic peptide synthesized and internalized by gonadotrophs?. Endocrinology 124:1703–1710, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Morel G, Dihl F, Gossard F. Ultrastructural distribution of growth hormone (GH) mRNA and GH intron 1 sequences in rat pituitary gland: effects of GH releasing factor, and somatostatin. Mol Cell Endocrinol 65:81–90, 1989.

    Article  PubMed  CAS  Google Scholar 

  11. Jirikowski GF, Sanna PP, Bloom FE. mRNA coding for oxytocin is present in axons of the hypothalamo-neurohypophyseal tract. Proc Natl Acad Sci USA 87:7400–7404, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Le Guellec D, Frappart L, Willems R. Ultrastructural localization of fibronectin mRNA in chick embryo by in situ hybridization using 35S or biotin labeled cDNA probes. Biol Cell 70:159–165, 1990.

    Article  PubMed  Google Scholar 

  13. Le Guellec D, Frappart L, Desprez PY. Ultrastructural localization of mRNA encoding for the EGF receptor in human breast cell cancer line BT20 by in situ hybridization. J Histochem Cytochem 39:1–6, 1991.

    PubMed  Google Scholar 

  14. Matsuno A, Utsunomiya H, Ohsugi Y, Takekoshi S, Sanno N, Osamura RY, Nagao K, Tamura A, Nagashima T. Simultaneous ultrastructural identification of growth hormone and its messenger ribonucleic acid using combined immunohistochemistry and non-radioisotopic in situ hybridization: a technical note. Histochem J 28:703–707, 1996.

    Article  PubMed  CAS  Google Scholar 

  15. Matsuno A, Ohsugi Y, Utsunomiya H, Takekoshi S, Munakata S, Nagao K, Osamura RY, Tamura A, Nagashima T. An improved ultrastructural double-staining method of rat growth hormone and its mRNA using LR White resin: a technical note. Histochem J 30:105–109, 1998.

    Article  PubMed  CAS  Google Scholar 

  16. Matsuno A, Nagashima T, Osamura RY, Watanabe K. Application of ultrastructural in situ hybridization combined with immuno-histochemistry to pathophysiological studies of pituitary cell: Technical Review. Acta Histochem Cytochem 31:259–265, 1998.

    Google Scholar 

  17. Itoh J, Sanno N, Matsuno A, Itoh Y, Watanabe K, Osamura RY. Application of confocal laser scanning microscopy (CLSM) to visualize prolactin (PRL) and PRL mRNA in the normal and estrogen-treated rat pituitary glands using non-fluorescent probes. Microsc Res Tech 39:157–167, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Arndt-Jovin DJ, Robert-Nicoud M, Jovin TM. Probing DNA structure and function with a multi-wavelength fluorescence confocal laser microscope. J Microsc 157:61–72, 1990.

    PubMed  CAS  Google Scholar 

  19. Arndt-Jovin DJ, Robert-Nicoud M, Kaufman SJ, Jovin TM. Fluorescence digital imaging microscopy in cell biology. Science 230:247–256, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Bauman JG, Bayer JA, van Dekken H. Fluorescent in-situ hybridization to detect cellular RNA by flow cytometry and confocal microscopy. J Microsc 157:73–81, 1990.

    PubMed  CAS  Google Scholar 

  21. Hozak P, Novak JT, Smetana K. Three-dimensional reconstruction of nucleolus-organizing regions in PHA-stimulated human lymphocytes. Biol Cell 66:225–233, 1989.

    Article  PubMed  CAS  Google Scholar 

  22. Michel E, Parsons JA. Histochemical and immunocytochemical localization of prolactin receptors on Nb2 lymphoma cells: applications of confocal microscopy. J Histochem Cytochem 38:965–973, 1990.

    PubMed  CAS  Google Scholar 

  23. Takamatsu, T, Fujita S. Microscopic tomography by laser scanning microscopy and its three-dimensional reconstruction. J Microsc 149:167–174, 1988.

    PubMed  CAS  Google Scholar 

  24. Tao W, Walter RJ, Berns MW. Laser-transected microtubules exhibit individuality of regrowth, however most free new ends of the microtubules are stable. J Cell Biol 107:1025–1035, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. White JG, Amos WB, Fordham M. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J Cell Biol 105:41–48, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Itoh J, Utsunomiya H, Komatsu N, Takekoshi S, Osamura RY, Watanabe K. A new application of confocal laser scanning microscopy (C-LSM) to observe subcellular organelles utilizing non fluorescent probe (osmium black). Histochem J 24:550, 1992.

    Google Scholar 

  27. Robinson JM, Batten BE. Detection of diaminobenzidine reactions using scanning laser confocal reflectance microscopy. J Histochem Cytochem 37:1761–1765, 1989.

    PubMed  CAS  Google Scholar 

  28. Itoh J, Osamura RY, Watanabe K. Subcellular visualization of light microscopic specimens by laser scanning microscopy and computer, analysis: a new application of image analysis. J Histochem Cytochem 40:955–967, 1992.

    PubMed  CAS  Google Scholar 

  29. Lloyd RV, Jin L, Chandler WF. In situ hybridization in the study of pituitary tissues. Path Res Pract 187:552–555, 1991.

    PubMed  CAS  Google Scholar 

  30. Egger D, Troxier M, Bienz K. Light and electron microscopic in situ hybridization: nonradioactive labeling and detection, double hybridization, and combined hybridization-immunocytochemistry. J Histochem Cytochem 42:815–822, 1994.

    PubMed  CAS  Google Scholar 

  31. Escaig-Haye F, Grigogiev V, Sharova I, Rudneva V, Buckrinskaya A, Fournier JG. Ultrastructural localization of HIV-1 RNA and core proteins. Simultaneous visualization using double immunogold labelling after in situ hybridization and immunocytochemistry. J Submicrosc Cytol Pathol 24:437–443, 1992.

    PubMed  CAS  Google Scholar 

  32. Gingras D, Bendayan M. Colloidal gold electron microscopic in situ hybridization: combination with immunocytochemistry for the study of insulin and amylase secretion. Cell Vision 2:218–225, 1995.

    CAS  Google Scholar 

  33. Morey AL, Ferguson, DJP, Fleming KA. Combined immunocytochemistry and non-isotopic in situ hybridization for the ultrastructural investigation of human parvovirus B19 infection. Histochem J 27:46–53, 1995.

    Article  PubMed  CAS  Google Scholar 

  34. Singer RH, Langevin GL, Lawrence JB. Ultrastructural visualization of cytoskeletal mRNAs and their associated proteins using double-label in situ hybridization. J Cell Biol 108:2343–2353, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuno, A., Itoh, J., Osamura, R.Y. et al. Electron microscopic and confocal laser scanning microscopic observation of subcellular organelles and pituitary hormone mRNA: Application of ultrastructuralIn situ hybridization and immunohistochemistry to the pathophysiological studies of pituitary cells. Endocr Pathol 10, 199–211 (1999). https://doi.org/10.1007/BF02738881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02738881

Key Words

Navigation