Skip to main content
Log in

F.E. in environmental engineering: Coupled thermo-hydro-mechanical processes in porous media including pollutant transport

  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Summary

This paper presents a general model for the analysis of coupled thermo-hydro-mechanical problems in porous media with possible pollutant transport. The governing equations are described and discrete solution techniques using the finite element method in space and finite differences in time are shown. Emphasis is put on a direct solution procedure, where the coupled system of equations is solved without use of matrix partitioning. Both the Newton-Raphson method and fixed point method are employed.

Application examples involving pollutant transport, heat and mass transfer in partially saturated geomaterials, dynamic strain localization and durability of concrete show the range of applicability of this model in the field of evironmental engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hutter, K. (1993), “Thermo-mechanically coupled ice-sheets response-cold, polythermal, temperate”,Journal of Glaciology, Vol.39, 65–86.

    Google Scholar 

  2. Gambolati, G., Verri, G.,Proc. Symposium on Advanced Methods for Groundwater Pollution Control, CISM, Springer Verlag, to appear.

  3. Schrefler, B.A., D’Alpaos, L., Zhan, X.Y. and Simoni, L. (1994), “Pollutant transport in deformingporous media”,Eur. J. Mech., A/Solids,13, n.4-suppl., 175–194.

    MATH  Google Scholar 

  4. Manassero, M. and Shakelford, C.D. (1994), “The role of diffusion in contaminant migration through soil barriers”,Rivista Italiana di Geotecnica,1, 5–23.

    Google Scholar 

  5. Chapman N.A. and McKinley, I.G. (1987),The Geological Disposal of Nuclear Waste, J. Wiley & Sons, Chichester.

    Google Scholar 

  6. Olivella, S., Carrera, J., Gens, A. and Alonso, E.E. (1994), “Non-isothermal multiphase flow of brine and gas through saline media”, inTransport in Porous Media,15, pp. 271–293.

  7. Olivella, S., Gens, A., Alonso, E.E. and Carrera, J. (1992), “Constitutive modelling of porous salt aggregate”, Proceedings of theIV Int. Symps. on Num. Models in Geomechanics, A.A. Balkema, Roterdam, 179–189.

  8. Saetta, A., Schrefler, B.A. and Vitaliani, R. (1993), “The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials”,Cement and Concrete Research,23, 761–772.

    Article  Google Scholar 

  9. de Boer, R., Ehlers, W., Kowalski, S. and Plischka, J. (1991), “Porous media, a survey of different approaches”,Forschungsbericht aus dem Fachbereich Bauwesen,54, Universität-Gesamthochschule Essen.

  10. Bowen, R.M. (1980), “Incompressible porous media models by use of the theory of mixtures”,Int. J. Engng. Sci.,18, 1129–1148.

    Article  MATH  Google Scholar 

  11. Williams, W.O. (1978), “Constitutive equations for flow of an incompressible viscous fluid through a porous medium”,Quarterly of Applied Mathematics, 255–267, October.

  12. Biot, M.A. (1935), “Le problème de la consolidation des matieres argilleuses sous une charge”,Ann. Soc. Sci. Bruxelles, série B 55, 110–113.

    Google Scholar 

  13. Biot, M.A. (1941), “General theory of three-dimensional consolidation”,J. Appl. Phys.,12, 155–164.

    Article  Google Scholar 

  14. Coussy, O. (1991),Mécanique des milieux poreux, Editions Techniq, Paris.

    Google Scholar 

  15. Hassanizadeh, M. and Gray W.G. (1979), “General conservation equations for multiphase systems: 1 Averaging procedure”,Adv. Water Resources,2, 131–144.

    Article  Google Scholar 

  16. Hassanizadeh, M. and Gray W.G. (1979), “General conservation equations for multiphase systems: 2. Mass momenta, energy and entropy equations”,Adv. Water Resources,2, 191–203.

    Article  Google Scholar 

  17. Hassanizadeh, M. and Gray W.G. (1980), “General conservation equations for multiphase systems: 3. Constitutive theory for porous media flow”,Adv. Water Resources,3, 25–40.

    Article  Google Scholar 

  18. Hassanizadeh, S.M. (1986), “Derivation of basic equations of mass in porous media, Part. 1 Macroscopic balance laws”,Adv. Water Resources, Vol.9, 196–206.

    Article  Google Scholar 

  19. Hassanizadeh, S.M. (1986), “Derivation of basic equations of mass in porous media, Part. 2. Generalized Darcy’s law and Fick’s law”,Adv. Water Resources, Vol.9, 207–222.

    Article  Google Scholar 

  20. Bear, J. and Bachmat, Y., “Transport phenomena in porous media—Basic equations”, fromFundamentals of Transport Phenomena in Porous Media, (Bar, J. and Corapcioglu. M. Y. eds.), Nato ASI Series, Nijhoff.

  21. Schrefler, B.A., Simoni, L., Xikui, L. and Zienkiewicz, O.C. (1990), “Mechanics of partially saturated porous media”, fromNumerical Methods and Constitutive Modelling in Geomechanics, C.S. Desai and G. Gioda, eds., Springer Verlag, Wien, 169–209.

    Google Scholar 

  22. Lewis, R.W. and Schrefler, B.A., “The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media”, to appear in Wiley & Sons.

  23. Malvern, L.E. (1969),Introduction to the Mechanics of a Continuous Medium, Prentice Hall, Englewood Cliffs, NJ.

    Google Scholar 

  24. Chen, W.F. and Tsui, Y. (1992), “Limitations to the large strain theory”,Int. J. Num. Meth. Eng.,33, 101–114.

    Article  Google Scholar 

  25. Molenkamp, F. (1986), “Limits to the Jaumann stress rate”,Int. J. Num. Anal. Meth. Geomech.,10, 151–176.

    Article  MATH  Google Scholar 

  26. Gray, W.G. and Hassanizadeh S.M. (1991), “Unsaturated flow theory includinginterfacial phenomena”,Water Resour Res., Vol.27, 1855–1863.

    Article  Google Scholar 

  27. Gray, W.G., and Hassanizadeh, S.M. (1991), “Paradoxes and realities in unsaturated flow theory”,Water Resour. Res., Vol.27, 1847–1854.

    Article  Google Scholar 

  28. Ehlers, W. (1989), “Poröse Medien, ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie”,Forschungsbericht aus dem Fachbereich Bauwesen,47, Universität Gesamthochschule Essen.

  29. Coleman, B.D., and Noll, W. (1963), “The thermodynamics of elastic materials with heat conduction and viscosity”,Arch. Ration. Mech. Anal.,13, 168–178.

    MathSciNet  Google Scholar 

  30. Bishop, A.W. (1959), “The principle of effective stress”,Teknisk Ukeblad,39, 859–863.

    Google Scholar 

  31. Biot, M.A., and Willis, P.G. (1957), “The elastic coefficients of the theory of consolidation”,J. Appl. Mech.,24, 594–601.

    MathSciNet  Google Scholar 

  32. Baggio, P., Bonacina, C. and Strada, M. (1993), “Trasporto di calore e di massa nel calcestruzzo cellulare”,La Termotecnica,45, 53–60.

    Google Scholar 

  33. Baggio, P., Majorana, C.E. and Schrefler, B.A. (1995), “Thermo-hygromechanical analysis of concrete”,I.J.N.M.F.,20, 573–595.

    Article  MATH  Google Scholar 

  34. Schrefler, B.A., Zhan, X. and Simoni, L. (1995), “A coupled model for water flow, airflow and heat flow in deformable porous media”, to appear in I.J.N.M. Heat and Fluid Flow.

  35. Zienkiewicz, O.C. and Taylor, R.L. (1989),The Finite Element Method, McGraw-Hill, London.

    Google Scholar 

  36. Lewis, R.W. and Schrefler, B.A. (1987),The Finite Element Method in the Deformation and Consolidation of Porous Media, Wiley and Sons, Chichester.

    Google Scholar 

  37. Norris, V. (1980), “The elastoplastic analysis of soil consolidation with special reference to kinematic hardening”,Ph.D. Thesis, University College of Swansea.

  38. Park, K.C. and Felippa, C.A. (1983), “Partitioned analysis of coupled systems”, from T. Belytschko and T.R.J. Hughes (eds),Computational Methods for Transient Analysis, Elsevier Science Publishers B.V.

  39. Turska, E., Wisniewski K. and Schrefler, B.A. (1994), “Error propagation of staggered solution procedures for transient problems”,Com. Methods in Appl. Mech. and Eng.,114, 177–178.

    Article  MathSciNet  Google Scholar 

  40. Turska, E. and Schrefler, B.A. (1993), “On convergence condition of partitioned solution procedures for consolidation problems”,Com. Methods in Appl. Mech. and Eng.,106, 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  41. Gawin, D., Baggio, P. and Schrefler, B.A. (1995), “Coupled heat, water and gas flow in deformable porous media”,I.J.N.M.F.,20, 969–987.

    Article  MATH  Google Scholar 

  42. Marchuk, G.I. (1975),Methods of Numerical Analysis, Springer Verlag, New York.

    Google Scholar 

  43. Forsyth, P.A. and Simpson, R.B. (1991), “A two phase, two component model for natural convection in a porous medium”,Int. J. Num. Meth. Fluids,12, 655–682.

    Article  MATH  Google Scholar 

  44. Schrefler, B.A. and Zhan, X. (1993), “A fully coupled model for water flow and airflow in deformable porous media”,Water Resour. Res.,29, 155–167.

    Article  Google Scholar 

  45. Brooks, R.N. and Corey, A.T. (1966), “Properties of Porous Media affectingfluid flow”,J. Irrig. Drain Div. Am. Soc. Civ. Eng.,92(IR2), 61–68.

    Google Scholar 

  46. Daksanamurthy, V. and Fredlund, D.G. (1981), “A mathematical model for predictingmoisture flow in an unsaturated soil under hydraulic and temperature gradients”,Water Resour. Res.,17, 714–722.

    Google Scholar 

  47. Gawin, D. and Schrefler, B.A., “Thermo-hydro-mechanical analysis of partially saturated porous materials”, to appear in Engineering Computations.

  48. Matticchio, B., D’Alpaos, L. and Lippe, E. (1991), “Indagine sperimentale sul movimento di un inquinante in colonna di sabbia parzialmente satura”, CNR, Programma speciale VAZAR, Publ. n. 260, Venice.

  49. Parker, J.C. (1989), “Multiphase flow and transportation in porous media”,Rev. Geoph.,27, 311–328.

    Google Scholar 

  50. Abriola, L.M. and Pinder, G.F. (1985), “A multiphase approach to modeling of porous media contamination by organic compounds 1. Numerical simulation”,Water Resour. Res.,21, 19–26.

    Google Scholar 

  51. Corapcioglu, M.Y. and Baehr, A.L. (1987), “A compositional multiphase model for groundwater contamination by petroleum produces. 1. Theoretical considerations”,Water Resour. Res.,23, 191–200.

    Google Scholar 

  52. Kueper, B.H. and Frind, E.O. (1989), “The behaviour of dense nonaqueous phase liquid contaminants in heterogeneous porous media”, inContaminant Transport on Groundwater, Kobus H.E. & Kinzelbach W. (eds.), 381–387, Balkema, Rotterdam.

    Google Scholar 

  53. Mendoza, C.A. and Frind, E.O. (1990), “Advective-dispersive transport of dense organic vapours in the unsaturated zone 1. Model development”,Water Resour. Res.,226, 379–387.

    Article  Google Scholar 

  54. Loret, B. and Prevost, J.H. (1991), “Dynamic strain localization in fluid saturated porous media”,J. Eng. Mech.,11, 907–922.

    Article  Google Scholar 

  55. Schrefler, B.A., Majorana, C. and Sanavia, L. (1995), “Shear band localization in saturated porous media”,Archives of Mechanics,47, 577–599.

    MATH  Google Scholar 

  56. Zienkiewicz, O.C., Xie, Y.M., Schrefler, B.A., Ledesma, A. and Bicanic, N. (1990), “Static and dynamic behaviour of soils: a rational approach to quantitative solutions. II semi-saturated problems”,Proc. R. Soc. Land.,A 429, 311–321.

    Article  MATH  Google Scholar 

  57. Meroi, E.A., Schrefler, B.A. and Zienkiewicz, O.C. (1995), “Large strain static and dynamic semisaturated soil behaviour”,Int. Num. Anal. Meth. Geomech.,19, 2, 81–106.

    Article  MATH  Google Scholar 

  58. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Paul, D.K. and Shiomi, T. (1990), “Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I fully saturated problems”,Proc. R. Soc. London,A 429, 285–309.

    MATH  Google Scholar 

  59. Cheng, W.F. and Tsui, Y. (1992), “Limitations to the large strain theory”,Int. J. Num. Meth. Eng. 33, 101–114.

    Article  MATH  MathSciNet  Google Scholar 

  60. Molenkamp, F. (1986), “Limits to the Jaumann stress rate,”Int. J. Num. Anal. Meth. Geomech.,10, 151–176.

    Article  MATH  Google Scholar 

  61. Bolzon, G., Schrefler, B.A. and Zienkiewicz, O.C., “Elastoplastic soil constitutive laws generalized to partially saturated states”, to appear in Geotechnique.

  62. Xie, Y.M. (1990), “Finite Element solution and adaptive analysis for static and dynamic problems of saturated-unsaturated porous media”,Ph. D. Thesis, Department of Civil Engineering, Swansea University, UK.

    Google Scholar 

  63. Safai, N.M. and Pinder, G.F. (1979), “Vertical and horizontal land deformation in a desaturating porous medium”,Adv. Water Resour.,2, 19–25.

    Article  Google Scholar 

  64. RILEM (1976),International symposium on carbonation of concrete, Cem. Concr. Ass.

  65. RILEM (1984),Seminar on the durability of concrete structure under normal outdoor exposure, 26th–29th March, Hannover.

  66. Tuutti, K. (1982), “Corrosion of steel in concrete”,Swedish Cement and Concrete Research Institute, Stockholm.

    Google Scholar 

  67. Saetta, A.V., Schrefler, B.A. and Vitaliani, R., “2-D model for carbonation and moisture/heat flow in porous materials”, to appear inCement and Concrete Research.

  68. Houst, Y. and Wittmann, F.H. (1989), “Diffusion de gaz et durabilité du béton armé”, IABSE Symposium,Durability of Structures, pp. 139–144, Lisbon.

  69. Houst, Y. and Wittmann, F.H. (1989), “Retrait de carbonatation”, IABSE Symposium,Durability of Structures, pp. 255–260, Lisbon.

  70. Bazant, Z.P. and Najjar, L.J. (1972), “Nonlinear water diffusion in nonsaturated concrete”,Materials and Structures, (RILEM, Paris), vol.5, n. 25, pp. 3–20.

    Google Scholar 

  71. Bazant, Z.P., Dougill, J.W., Huet, C., Tsubaki, T. and Wittmann, F.H. (1988), “Materials model for structural creep analysis”, inMathematical Modelling of Creep and Shrinkage of Concrete, ed. Z.P. Bazant, 99–216.

  72. Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), “Analysis of chloride diffusion into partially saturated concrete”,ACI Materials Journal,90, Nr. 5, 441–451.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrefler, B.A. F.E. in environmental engineering: Coupled thermo-hydro-mechanical processes in porous media including pollutant transport. ARCO 2, 1–54 (1995). https://doi.org/10.1007/BF02736173

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02736173

Keywords

Navigation