Skip to main content
Log in

The FCC nuclear model

I. — Equivalence between the FCC lattice and nucleon eigenstates and the correspondence with the spin-orbit model

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

There is an unambiguous geometrical representation of nuclear « quantum space » which is analogous to the electron orbitals of the hydrogen atom. In both the atom and the nucleus, the position of each fermion relative to the axes of « quantum space » is dependent upon the particle’s eigenvalues. In the nuclear realm, the geometry of eigenstates corresponds precisely with the symmetries of an antiferromagnetic face-centred cubic (FCC) lattice with alternating isospin layers. The correspondence between the eigenstates of the Schrödinger equation and the FCC lattice is demonstrated and the relationship between the spin-orbit model and the FCC model is discussed. The random-phase-approximation (RPA) technique is used to examine the ground and excited states of the FCC lattice.

Riassunto

Si dà una rappresentazione geometrica dello spazio quantico nucleare analoga agli orbitali elettronici nell’atomo di idrogeno. Sia nell’atomo che nel nucleo, la posizione di ciascun fermione relativa agli assi dello spazio quantico dipende dagli autovalori della particella. Nel nucleo, la geometria degli autostati corrisponde alle simmetrie di un reticolo antiferromagnetico FCC con piani alternati di isospin. Si discute la corrispondenza tra gli autostati dell’equazione di Schrödinger e il reticolo FCC e mostrata la relazione tra il modello spin-orbita e il modello FCC. La RPA è usata per esaminare lo stato fondamentale e gli stati eccitati del reticolo FCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. D. Cook:Atomkernenergie,28, 195 (1976);

    Google Scholar 

  2. Int. J. Theor. Phys.,17, 21 (1978);

    Google Scholar 

  3. Atomkernen./Kerntech.,40, 51 (1982);

  4. V. Dallacasa:Atomkernen./Kerntech.,37, 143 (1981);

    Google Scholar 

  5. N. D. Cook andV. Dallacasa:Nuovo Cimento A,97, 148 (1987),

    Article  Google Scholar 

  6. G. F. Bertsch, L. Zamick andA. Mekjian:Lect. Notes Phys.,119, 240 (1980).

    Article  ADS  Google Scholar 

  7. R. Dymarz andT. Kohmura:Phys. Lett. B,124, 446 (1982);

    Article  ADS  Google Scholar 

  8. J. Aichelin andH. Stocker:Phys. Lett. B,163, 59 (1985).

    Article  ADS  Google Scholar 

  9. J. M. Blatt andV. Weisskopf:Theoretical Nuclear Physics (Wiley, New York, N. Y., 1952), p. 778 ff.

    MATH  Google Scholar 

  10. H. A. Bethe:Annu. Rev. Nucl. Sci.,21, 93 (1971).

    Article  ADS  Google Scholar 

  11. G. Herzberg:Atomic Spectra and Atomic Structure (Dover, New York, N. Y., 1944).

    Google Scholar 

  12. F. Calogero andF. Palumbo:Lett. Nuovo Cimento,6, 663 (1973).

    Article  Google Scholar 

  13. V. Canuto:Annu. Rev. Astron. Astrophys.,12, 167 (1974);13, 335 (1975).

    Article  ADS  Google Scholar 

  14. C. W. Wong andK. F. Liu:Lect. Notes Phys.,144, 1 (1981).

    Article  ADS  Google Scholar 

  15. C. DeTar:Phys. Rev. D,17, 323 (1978);19, 1451 (1979).

    Article  ADS  Google Scholar 

  16. M. B. Gavela, A. Le Yaouanc, L. Oliver, O. Pene, J. C. Raynal andS. Sood:Phys. Lett. B,82, 431 (1979).

    Article  ADS  Google Scholar 

  17. C. S. Warke andR. Shanker:Phys. Rev. C,21, 2643 (1980).

    Article  ADS  Google Scholar 

  18. G. A. Miller:Lect. Notes Phys.,197, 195 (1984).

    Google Scholar 

  19. W. A. Myers andK. H. Schmidt:Nucl. Phys. A,410, 61 (1983).

    Article  ADS  Google Scholar 

  20. H. R. Petry:Lect. Notes Phys.,197, 236 (1984).

    Article  ADS  Google Scholar 

  21. V. Canuto andS. M. Chitre:Int. Astron. Union Symp.,53, 133 (1974).

    Google Scholar 

  22. M. G. Meyer andJ. H. D. Jensen:Elementary Theory of Nuclear Shell Structure (Wiley, New York, N. Y., 1955).

    Google Scholar 

  23. V. Dallacasa, M. Gardani andN. D. Cook: in preparation.

  24. J. M. Ziman:Principle of the Theory of Solids (Cambridge University Press, London, 1975).

    Google Scholar 

  25. C. Kittel:Introduction to Solid State Physics (Wiley, New York, N. Y., 1968).

    Google Scholar 

  26. I. Ulehla, L. Gomolcak andZ. Pluhar:Optical Model of the Atomic Nucleus Academic Press, New York, N. Y., 1964);

    Google Scholar 

  27. P. E. Hodgson: inSelected Topics in Nuclear Spectroscopy, edited byB. J. Verhaar (North-Holland, Amsterdam, 1964);

    Google Scholar 

  28. V. Bernard andN. van Giai:Nucl. Phys. A,327, 397 (1979);

    Article  ADS  Google Scholar 

  29. S. Fernbach:Rev. Mod. Phys.,30, 414 (1958);

    Article  ADS  Google Scholar 

  30. F. G. Perey andB. Buck:Nucl. Phys.,32, 353 (1962);

    Article  MATH  Google Scholar 

  31. W. P. Bucher andG. E. Hollandsworth:Phys. Rev. Lett.,35, 1419 (1975).

    Article  ADS  Google Scholar 

  32. T. W. Donelly andG. E. Walker:Phys. Rev. Lett.,22, 1121 (1969);

    Article  ADS  Google Scholar 

  33. X. Campi, D. W. L. Sprung andJ. Martorell:Nucl. Phys. A,223, 541 (1974);

    Article  ADS  Google Scholar 

  34. Phan-Xuan-Ho, J. Bellicard andP. Leconte:Nucl. Phys. A,210, 189 (1973).

    Article  ADS  Google Scholar 

  35. A. V. Yushkov andN. N. Pavlova:Sov. J. Nucl. Phys.,191, 370 (1974);

    Google Scholar 

  36. Bull. Acad. Sci. USSR, Phys. Ser.,40, 115 (1976);

  37. N. N. Pavlova, A. M. Ivanov, A. V. Yushkov andA. V. Toktarov:Bull. Acad. Sci. USSR, Phys. Ser.,41, 145 (1977);43, 63 (1979);

    Google Scholar 

  38. A. Berinde:Nucl. Instrum. Methods,167, 439 (1979).

    Article  ADS  Google Scholar 

  39. H. O. Meyer, P. Schwandt, G. L. Moake andP. P. Sing:Phys. Rev. C,23, 616 (1981);

    Article  ADS  Google Scholar 

  40. H. O. Meyer, J. Hall, W. W. Jacobs, P. P. Schwandt andP. P. Singh:Phys. Rev. C,24, 1782 (1981).

    Article  ADS  Google Scholar 

  41. A. B. Migdal:Rev. Mod. Phys.,50, 107 (1978);

    Article  ADS  Google Scholar 

  42. S. O. Backman andW. Weise:Phys. Lett.,53, 1 (1975).

    Article  Google Scholar 

  43. J. Meyer-Ter-Vehn:Phys. Rep.,74, 324 (1981).

    Article  ADS  Google Scholar 

  44. K. Kumar:Perturbation Theory and the Nuclear Many-Body Problem (North-Holland, Amsterdam, 1962), p. 152.

    Google Scholar 

  45. D. Pines andP. Nozieres:The Theory of Quantum Liquids (Benjamin, New York, N. Y., 1966).

    Google Scholar 

  46. V. Dallacasa:Z. Naturforsch., Teil A,32, 844 (1977);O. V. Dolgov, D. A. Kirzhnits andE. G. Maxsimov:Rev. Mod. Phys.,53, 81 (1981).

    ADS  Google Scholar 

  47. A. L. Fetter andJ. D. Walecka:Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, N. Y., 1971).

    Google Scholar 

  48. V. R. Pandharipande andR. A. Smith:Nucl. Phys. A,237, 507 (1975).

    Article  ADS  Google Scholar 

  49. T. Matsui, T. Otofuji, K. Sakai andM. Yasuno:Prog. Theor. Phys.,63, 1665 (1980);

    Article  ADS  Google Scholar 

  50. T. Takatsuka K. Tamiya, T. Tatsumi andR. Tamagaki:Prog. Theor. Phys.,59, 1933 (1978);

    Article  ADS  Google Scholar 

  51. R. Tamagaki:Nucl. Phys. A,328, 352 (1979);

    Article  ADS  Google Scholar 

  52. R. Tamagaki, T. Takatsuka andH. Frukawa:Prog. Theor. Phys.,64, 2107 (1980);

    Article  ADS  Google Scholar 

  53. T. Takatsuka andR. Tamagaki:Prog. Theor. Phys.,65, 1333 (1981).

    Article  ADS  Google Scholar 

  54. M. A. Preston andR. K. Badhuri:Structure of the Nucleus (Addison-Wesley, London, 1975).

    Google Scholar 

  55. J. L. Powell andB. Craserman:Quantum Mechanics (Addison-Wesley, London, 1961).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dallacasa, V., Cook, N.D. The FCC nuclear model. Nuov Cim A 97, 157–183 (1987). https://doi.org/10.1007/BF02733846

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02733846

Keywords

Navigation