Skip to main content
Log in

Urinary excretion of glycated albumin in insulin-dependent diabetic patients with normal urinary albumin excretion

  • Original Contributions
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Summary

Glycation involves both circulating proteins, such as albumin, and structural proteins, such as the components of the glomerular basement membrane. A preferential excretion of glycated albumin (more anionic at physiological pH compared with unmodified plasma albumin) has been reported by some authors, but not by others. We therefore investigated the selectivity index (renal clearance of non-glycated albumin/clearance of glycated albumin) in 25 insulin-dependent diabetic patients with normal urinary albumin excretion and in 19 well-matched control subjects. The selectivity index was significantly higher in diabetic patients than in control subjects: 1.38±0.05 SEMvs 0.98±0.02, p<0.0001. This result is not consistent with a preferential urinary excretion of glycated albumin, at least in normoalbuminuric uncomplicated insulin-dependent diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertolatus J. A., Abuyouset M., Hunsicker L. G.: Glomerular sieving of high molecular weight proteins in proteinuric rats—Kidney int.31, 1257–1266, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Brownlee M., Pongor S., Cerami A.: Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen: role in thein situ formation of immune complexes—J. exp. Med.138, 1739–1744, 1983.

    Article  Google Scholar 

  3. Brownlee M., Vlassara H., Cerami A.: Nonenzymatic glycosylation and the pathogenesis of diabetic complications—Ann. intern. Med.101, 527–537, 1984.

    PubMed  CAS  Google Scholar 

  4. Cecchini G., Calefato V., Chiambretti A., Cavallo M., Dianzani M. U., Vitelli A.: Glycosylated serum albumin: high performance liquid chromatography (HPLC) evaluation in normal and diabetic patients—IRCS med. Sci.14, 1027–1028, 1986.

    CAS  Google Scholar 

  5. Christensen E. I., Carone F. A., Rennke H. C.: Effect of molecular charge on endocytic uptake of ferritin in renal proximal tubule cells—Lab. Invest.44, 351–358, 1981.

    PubMed  CAS  Google Scholar 

  6. Christensen E. I., Rennke H. C., Carone F. A.: Renal tubular uptake of protein: effect of molecular charge—Amer. J. Physiol244, F436-F441, 1983.

    PubMed  CAS  Google Scholar 

  7. Cohen M. P., Urdanivia E., Surma M., Wu V.-Y.: Increased glycosylation of glomerular basement membrane collagen in diabetes—Biophys. Res. Commun.95, 765–769, 1980.

    Article  CAS  Google Scholar 

  8. Day J. F., Thorpe S. R., Baynes J. W.: Nonenzymatically glycosylated albumin—J. biol. Chem.254, 595–597, 1979.

    PubMed  CAS  Google Scholar 

  9. Fabini D. L., Ertingshausen C.: Automated reaction-rate method for determination of serum creatinine with the CentrifiChem—Clin. Chem.17, 696–700, 1971.

    Google Scholar 

  10. Ghiggeri G. M., Candiano G., Delfino G., Bianchini F., Queirolo C.: Glycosyl albumin and diabetic microalbuminuria: demonstration of an altered renal handling—Kidney int.25, 565–570, 1984.

    Article  PubMed  CAS  Google Scholar 

  11. Ghiggeri G. M., Candiano G., Delfino G., Queirolo C.: Electrical charge of serum and urinary albumin in normal and diabetic humans—Kidney int.28, 168–177, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Gragnoli G., Signorini A. M., Tanganelli I.: Non-enzymatic glycosylation of urinary proteins in type I (insulin-dependent) diabetes: correlation with metabolic control and the degree of proteinuria—Diabetologia26, 411–414, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Kanwar Y. S., Rosenzweig L. J.: Clogging of the glomerular basement membrane—J. cell. Biol.93, 489–494, 1982.

    Article  PubMed  CAS  Google Scholar 

  14. Kennedy L., Baynes J. W.: Non-enzymatic glycosylation and the chronic complications of diabetes: an overview—Diabetologia26, 93–98, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Kennedy L., Mehl T. D., Riley W. J., Merimee T. J.: Non-enzymatically glycosylated serum proteins in diabetes mellitus: an index of short term glycemia—Diabetologia21, 94–98, 1981.

    Article  PubMed  CAS  Google Scholar 

  16. Krempf M., Marre M.: La microalbuminurie chez les diabétiques. I.—Définition, intérêt et physiopathologie—Diabète et Metabol.13, 225–231, 1987.

    CAS  Google Scholar 

  17. Kverneland A., Feldt-Rasmussen B., Vidal P., Welinder B., Bent-Hansen L., Soegaard U., Deckert T.: Evidence of changes in renal charge selectivity in patients with type 1 (insulin-dependent) diabetes mellitus—Diabetologia29, 634–639, 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Kverneland A., Welinder B., Feldt-Rasmussen B., Deckert T.: Improved metabolic control does not alter the charge-dependent glomerular filtration of albumin in uncomplicated type 1 (insulin-dependent) diabetes—Diabetologia31, 708–710, 1988.

    Article  PubMed  CAS  Google Scholar 

  19. Melvin T., Kim Y., Michael A. F.: Selective binding of IgG4 and other negatively charged plasma proteins in normal and diabetic human kidneys—Amer. J. Pathol.115, 443–446, 1994.

    Google Scholar 

  20. Michael A. F., Brown D. M.: Increased concentration of albumin in kidney basement membranes in diabetes mellitus—Diabetes30, 843–846, 1981.

    Article  PubMed  CAS  Google Scholar 

  21. Michelis L. D., Davidman M., Keane W. E.: Glomerular permeability to neutral and anionic dextrans in experimental diabetes—Kidney int.21, 699–705, 1982.

    Article  Google Scholar 

  22. Schleicher E., Wieland O. H.: Specific quantitation by HPLC of protein (Lysine) bound glucose in human serum albumin and other glycosylated proteins—J. clin. Chem. clin. Biochem.19, 81–87, 1981.

    PubMed  CAS  Google Scholar 

  23. Schleicher E., Wieland E.: Changes of human glomerular basement membrane in diabetes mellitus—J. clin. Chem. clin. Biochem.22, 223–227, 1984.

    PubMed  CAS  Google Scholar 

  24. Sumpio B. E., Maack T.: Kinetics, competition and selectivity of tubular absorption of proteins —Amer. J. Physiol.243, 379–392, 1982.

    Google Scholar 

  25. Tarsio J. F., Wigness B., Rhode T. D., Rupp W. M., Buchwald H., Furcht L. T.: Nonenzymatic glycation of fibronectin and alterations of cell matrix and basement membrane components in diabetes mellitus—Diabetes34, 477–484, 1985.

    Article  PubMed  CAS  Google Scholar 

  26. Tetta C., Cavallo-Perin P., Roggero S., Malavasii ?., Estivi P., Triolo G., Camussi G., Pagano G.: Exercise-induced microalbuminuria in diabetes is associated with the urinary excretion of cationic proteins—Clin. Nephrol.30, 270–275, 1988.

    PubMed  CAS  Google Scholar 

  27. Wahl P., Deppermann D., Hasslacher C.: Biochemistry of glomerular basement membrane of the normal and diabetic human—Kidney int.21, 744–749, 1982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagano, G., Chiambretti, A., Calefato, V. et al. Urinary excretion of glycated albumin in insulin-dependent diabetic patients with normal urinary albumin excretion. Acta diabet. lat 28, 39–45 (1991). https://doi.org/10.1007/BF02732112

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02732112

Key-words

Navigation