Skip to main content
Log in

Is the Hamiltonian\(H = (\dot x^2 + \dot y^2 + x^2 y^2 )/2\) completely chaotic?completely chaotic?

  • Published:
Il Nuovo Cimento B (1971-1996)

Summary

By following the bifurcation sequences of two main families of periodic orbits of the Hamiltonian\(H(\alpha ) = (\dot x^2 + \dot y^2 + x^2 y^2 )/2 + \alpha (x^2 + y^2 )/2\) as α→0, we show that they all destabilize in a systematic way (mainly by period-doubling bifurcations), and are unstable at α=0, suggesting that there is no stable periodic orbit in that limit. Still, despite this, and related results by other authors, it has not been rigorously proved to date that the HamiltonianH(0) is completely chaotic,i.e. that all of its periodic orbits are unstable.

Riassunto

Seguendo le sequenze di biforcazione di due principali famiglie di orbite periodiche dell’Hamiltoniana\(H(\alpha ) = (\dot x^2 + \dot y^2 + x^2 y^2 )/2 + \alpha (x^2 + y^2 )/2\) mentre α→0, si mostra che tutte destabilizzano in un modo sistematico (principalmente per biforcazioni a raddoppio di periodo) e sono instabili a α=0, il che suggerisce che non c’è nessuna orbita periodica stabile in quel limite. Tuttavia, nonostante ciò e i risultati riportati da altri autori non è stato rigorosamente provato fino ad ora che l’hamiltonianaH(0) è completamente caotica, cioè che tutte le sue orbite periodiche sono instabili.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Ford: inFundamental Problems in Statistical Mechanics, edited byE. G. D. Cohen, Vol. 3 (North Holland, Amsterdam, 1975).

    Google Scholar 

  2. M. A. Olshanetsky andA. M. Perelomov:Phys. Rep.,71, 313 (1981).

    Article  MathSciNet  ADS  Google Scholar 

  3. V. I. Arnol’d andA. Avez:Ergodic Problems in Classical Mechanics (Benjamin, New York, N.Y., 1974).

    Google Scholar 

  4. J. Moser:Stable and Random Motions (Princeton University Press, Princeton, N.J., 1973).

    MATH  Google Scholar 

  5. M. C. Gutzwiller:J. Math. Phys. (N.Y.),14, 139 (1973); see alsoJ. Math. Phys. (N.Y.),18, 806 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  6. R. L. Devaney:J. Diff. Eqs.,29, 253 (1978); also inLecture Notes in Mathematics, Vol.668 (Springer-Verlag, 1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. S. G. Matinyan:Sov. J. Part. Nucl.,16, 276 (1985).

    MathSciNet  Google Scholar 

  8. G. K. Savvidi:Phys. Lett. B,130, 303 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  9. S. G. Matinyan et al.:Sov. Phys. JETP,53, 421 (1981).

    Google Scholar 

  10. A. Carnegie andI. C. Percival:J. Phys. A,17, 801 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. G. Casati, G. Comparin andI. Guarneri:Phys. Rev. A,26 (1982).

  12. F. Vivaldi, G. Casati andI. Guarneri:Phys. Rev. Lett.,51, 727 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  13. M. Abramowitz andI. Stegun:Handbook of Mathematical Functions (Dover, New York, N.Y., 1965).

    Google Scholar 

  14. H. T. Davis:Introduction to Nonlinear Differential and Integral Equations (Dover, New York, N.Y., 1962).

    MATH  Google Scholar 

  15. E. T. Whittaker andG. N. Watson:A Course in Modern Analysis (Cambridge 4th ed., 1927).

  16. W. Magnus andS. Winkler:Hill’s Equation (Dover, New York, N.Y., 1979).

    Google Scholar 

  17. R. C. Churchill, G. Pecelli andD. L. Rod:Arch. Ration Mech. Anal.,73, 313 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Bountis:Physica D,3, 577 (1981).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. A. J. Lichtenberg andM. A. Lieberman:Regular and Stochastic Motion (Springer-Verlag, Berlin, 1983).

    Book  MATH  Google Scholar 

  20. G. Contopoulos:Lett. Nuovo Cimento,37, 257 (1983).

    Article  Google Scholar 

  21. J. L. Lebowitz andO. Penrose:Phys. Today,23 (1973).

Download references

Author information

Authors and Affiliations

Authors

Additional information

To speed up publication, the authors of this paper have agreed to not receive the proofs for correction.

Traduzione a cura della Redazione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohos, G., Bountis, T. & Polymilis, H. Is the Hamiltonian\(H = (\dot x^2 + \dot y^2 + x^2 y^2 )/2\) completely chaotic?completely chaotic?. Nuov Cim B 104, 339–352 (1989). https://doi.org/10.1007/BF02728404

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02728404

Keywords

Navigation