Skip to main content
Log in

Bremsstrahlung linear polarization

  • Published:
Il Nuovo Cimento (1955-1965)

Summary

This work presents a general quantitative description of the bremsstrahlung linear polarization on the basis of original experimental data and available theoretical calculations. The results give the dependence of the polarization ona) the initial electron kinetic energy,T 0, in a range from 10−2 to 103 MeV,b) the photon energy in a range from 0.1T 0 toT 0,c) the photon emission angle in a range from 0 to 180 degrees, andd) the atomic number of the target in a range from 4 to 79. The experimental data were obtained for a range of electron energies from 0.05 to 1.0 MeV with beryllium, aluminum, and gold targets. Theoretical estimates of the polarization were calculated from the Sommerfeld-Kirkpatrick-Wiedmann results for the non-relativistic energy region, the Olsen-Maximon results for the extreme relativistic energy region, and the Gluckstern-Hull (Born approximation) results for the intermediate energy region. Final results are expressed in terms of the peak polarization and the corresponding peak angle as a function of the electron and photon energies, and best estimates of the polarization are given on the basis of the combined experimental and theoretical data.

Riassunto

Nel presente lavoro si espone una descrizione quantitativa generale della polarizzazione lineare di bremsstrahlung sulla base dei dati sperimentali originali e dei calcoli teorici disponibili. I risultati danno la dipendenza della polarizzazione da:a) l’energia cinetica iniziale dell’elettrone,T 0, nel campo da 10−2 a 103 MeV;b) l’energia dei fotoni nel campo fra 0.1T 0 eT 0;c) l’angolo di emissione dei fotoni nel campo fra 0° e 180°, ed) il numero atomico del bersaglio nel campo fra 4 e 79. I dati sperimentali sono stati ottenuti per una zona di energie dell’elettrone da 0.05 a 1.0 MeV con bersagli di berillio, alluminio ed oro. Le valutazioni teoriche della polarizzazione furono dedotte dai risultati di Sommerfeld-Kirkpatrick-Wiedmann per la regione non-relativistica di energia, dai risultati di Olsen-Maximon per la regione relativistica estrema, e dai risultati di Gluckstern-Hull (approssimazione di Born) per la regione intermedia. I risultati finali sono espressi in termini della polarizzazione di picco e il corrispondente angolo di picco come funzione delle energie dell’elettrone e del fotone, e le migliori valutazioni della polarizzazione sono espresse sulla base dei risultati sperimentali e teorici combinati.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Barkla:Trans. Roy. Soc.,204, 467 (1905).

    Article  ADS  Google Scholar 

  2. M. Goldhaber, L. Grodzins andA. W. Sunyar:Phys. Rev.,106, 826 (1957).

    Article  ADS  Google Scholar 

  3. These effects have been pointed out and analyzed byU. Fano, K. W. McVoy, andJ. Albers:Phys. Rev.,116, 1147 (1959).

    Article  ADS  Google Scholar 

  4. C. Fronsdal andH. Überall:Nuovo Cimento,8, 163 (1958);Phys. Rev.,111, 580 (1958). These calculations show that the linear polarization is independent of the initial electron spin state only in the Born approximation.

    Article  Google Scholar 

  5. H. Olsen andL. C. Maximon:Phys. Rev.,114, 887 (1959).

    Article  MathSciNet  ADS  Google Scholar 

  6. J. W. Motz:Phys. Rev.,104, 557 (1956).

    Article  ADS  Google Scholar 

  7. J. W. Motz andR. C. Placious:Phys. Rev.,112, 1039 (1958).

    Article  ADS  Google Scholar 

  8. A. Sommerfeld:Ann. Phys.,11, 257 (1931).

    Article  Google Scholar 

  9. P. Kirkpatrick andL. Wiedmann:Phys. Rev.,67, 321 (1945).

    Article  ADS  Google Scholar 

  10. R. L. Gluckstern andM. H. Hull jr.:Phys. Rev.,90, 1030 (1953).

    Article  ADS  Google Scholar 

  11. M. May andG. C. Wick:Phys. Rev.,81, 628 (1951);M. May:Phys. Rev.,84, 265 (1951).

    Article  ADS  Google Scholar 

  12. H. Kulenkampff:Phys. Zeits.,30, 514 (1929);D. S. Piston:Phys. Rev.,49, 275 (1936).

    Google Scholar 

  13. H. Kulenkampff, S. Leisegang andM. Scheer:Zeits. Phys.,137, 435 (1954).

    Article  ADS  Google Scholar 

  14. J. M. Dudley, F. W. Inman andR. W. Kenney:Phys. Rev.,102, 925 (1956).

    Article  ADS  Google Scholar 

  15. D. Jamnik andP. Axel:Phys. Rev. (To be published).

  16. According to common usage (seee.g. ref. (20)), the « Coulomb effect » or the « Coulomb correction » indicates the difference between the exact and the Born-approximation bremsstrahlung cross section.

    Article  ADS  Google Scholar 

  17. O. Scherzer:Ann. d. Phys.,13, 137 (1932).

    Article  ADS  Google Scholar 

  18. W. Heitler:The Quantum Theory of Radiation, 3rd ed. (London, 1954), p. 249.

  19. See Eq. (6) in Ref. (3). Also,F. E. Low:Phys. Rev.,110, 974 (1958), shows that the bremsstrahlung cross section in the limit ofk=0 is given by the elastic scattering cross section times a factor which describes the X-ray emission associated with the scattering.

    Article  ADS  Google Scholar 

  20. H. W. Koch andJ. W. Motz:Rev. Mod. Phys.,31, 920 (1959), (see Fig. 13).

    Article  ADS  Google Scholar 

  21. J. W. Motz:Phys. Rev.,100, 1560 (1955).

    Article  ADS  Google Scholar 

  22. H. Kulenkampff, M. Scheer andE. Zeitler:Zeits. Phys.,157, 275 (1959). We are grateful to Dr.M. Scheer for informing us of this work before its publication.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motz, J.W., Placious, R.C. Bremsstrahlung linear polarization. Nuovo Cim 15, 571–598 (1960). https://doi.org/10.1007/BF02724990

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02724990

Navigation