Skip to main content
Log in

Molecular orbital studies on the Wagner-Meerwein migration in some acyclic pinacol—pinacolone rearrangements

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The semi-empirical PM3 SCF-MO method is used to investigate the Wagner-Meerwein migration of various groups during the pinacol-pinacolone rearrangement of some acyclic systems. Pinacol first protonates and dehydrates to form a carbocation that undergoes a 1,2-migration to form a protonated ketone, which then deprotonates to yield the pinacolone product. We study the Wagner-Meerwein migration of hydride, methyl, ethyl, isopropyl,t- butyl, phenyl and heterocylic 2-, 3-and 4-pyridyl groups in various acyclic 1,2-diol (pinacol) systems as they rearrange to pinacolones. This 1,2-migration involves a three-centred moiety in the cationic transition state. The migratory aptitude predicted here follows the order: hydride >t-butyl > isopropyl > ethyl > methyl > phenyl, which accords well with available experimental data and/or chemical intuition, reflecting also on the ability of the group involved to carry positive charge in the transition state. The structure of the migrating group (whether aliphatic or aromatic) within the transition state also supports the stabilising role of delocalisation of positive charge for reaction feasibility. Geometrical and thermodynamic considerations coincide in assigning the following order to relative “earliness” of the transition state along the reaction pathway:t-butyl > isopropyl > phenyl > methyl > 2-pyridyl > 4-pyridyl

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olah G A and Schleyer P v R 1969Carbonium ions (New York, London, Sydney, Toronto: Wiley-Interscience) vol. 2; Olah G A and Schleyer P v R 1971Carbonium ions (New York, London, Sydney, Toronto: Wiley-Interscience) vol. 3; Creary X 1991Chem. Rev. 91 1625

    Google Scholar 

  2. Vogel P 1985Organic chemistry: Studies in organic chemistry 21 (New York: Elsevier Science) ch. 10; Saunders M and Jiminez-Vazquez H A 1991Chem. Rev. 91 375

    Google Scholar 

  3. Pine S H 1987Organic chemistry 5th edn (Singapore: McGraw-Hill) p. 973

    Google Scholar 

  4. Sykes P 1986A guide book to mechanism in organic chemistry 6th edn (New Delhi: Orient Longman) p. 1ll

    Google Scholar 

  5. Fittig W 1859Annalen 110 23; Fittig W 1860Annalen 114 54

    Google Scholar 

  6. Collins CJ 1960Q. Rev. 375

  7. Cecchi P, Cipollini R, Pizzabiocca A, Renzi G and Speranza M 1988Tetrahedron 44 4847

    Article  CAS  Google Scholar 

  8. Suzuki K, Ohkuma T, Miyazawa M and Tsichihashi G 1986Tetrahedron Lett. 27 373

    Article  CAS  Google Scholar 

  9. Suzuki K, Katayama E and Tsuchihashi G 1984Tetrahedron Lett. 25 1817

    Article  CAS  Google Scholar 

  10. Suzuki K, Katayamma E and Tsuchihashi G 1983Tetrahedron Lett. 24 4997

    Article  CAS  Google Scholar 

  11. Stiles M and Meyer R P 1959J. Am. Chem. Soc. 81 1499

    Google Scholar 

  12. Shono T, Fujita K, Kumai S, Watanabe T and Nishiguchi I 1972Tetrahedron Lett. 31 3249

    Article  Google Scholar 

  13. Pilkington J W and Waring A J 1973Tetrahedron Lett. 44 4345

    Article  Google Scholar 

  14. Tsuchihashi G, Tomooka K and Suzuki K 1984Tetrahedron Lett. 25 4253

    Article  CAS  Google Scholar 

  15. Shine H J 1967Aromatic rearrangements (Amsterdam, London, New York: Elsevier) ch. 1

    Google Scholar 

  16. Collins C J 1955J. Am. Chem. Soc. 77 5517

    Article  CAS  Google Scholar 

  17. Carlin R B and Shivaramakrishnan K P 1970J. Org. Chem. 35 2368

    Article  Google Scholar 

  18. Mayo P D 1980Rearrangement in ground and excited states (New York: Academic Press) p. 35

    Google Scholar 

  19. Hammond G S 1955J. Am. Chem. Soc. 77 334

    Article  CAS  Google Scholar 

  20. Stewart J J P 1989J. Comput. Chem. 10 209

    Article  CAS  Google Scholar 

  21. Stewart J JP 1983QCPEBull. 3 43

    Google Scholar 

  22. Shano D F J 1985Opt. Theory Appl. 46 87; Stewart J J P 1990 Frank J Seiler Research Laboratory, United States Air Force Academy, CO 80840

    Article  Google Scholar 

  23. Maquestiau A, Flammang R, Flammang-Barbieux M and Mispreuve H 1980Tetrahedron 36 1994

    Article  Google Scholar 

  24. Young-Sook P H 1988Bull. Korean Chem. Soc. 10 151

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Duncan Lyngdoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pachuau, Z., Lyngdoh, R.H.D. Molecular orbital studies on the Wagner-Meerwein migration in some acyclic pinacol—pinacolone rearrangements. J Chem Sci 116, 83–91 (2004). https://doi.org/10.1007/BF02708200

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02708200

Keywords

Navigation