Skip to main content
Log in

Bulk metallic glasses: A new class of engineering materials

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Bulk glass-forming alloys have emerged over the past fifteen years with attractive properties and technological promise. A number of alloy systems based on lanthanum, magnesium, zirconium, palladium, iron, cobalt and nickel have been discovered. Glass-forming ability depends on various factors like enthalpy of mixing, atomic size and multicomponent alloying. A number of processes is available to synthesise bulk metallic glasses. The crystallisation behaviour and mechanical properties of these alloys pose interesting scientific questions. Upon crystallisation many of these glasses transform to bulk nanocrystals and nanoquasicrystals. A detailed study of the structure and the crystallisation behaviour of glasses has enabled the elucidation of the possible atomic configuration in liquid alloys. Their crystallisation behaviour can be exploited to synthesise novel nanocomposite microstructures and their mechanical properties can be enhanced. A broad overview of the present status of the science and technology of bulk metallic glasses and their potential technological uses is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amiya K, Inoue A 2000 Thermal stability and mechanical properties of Mg-Y-Cu-M (M=Pd, Ag) bulk amorphous alloysMater.Trans. Japan Inst. Metals 41: 1460–1462

    Google Scholar 

  • Anantharaman T R (ed.) 1984Metallic glasses: Production, properties and applications (Trans. Tech. Publications)

  • Angell C A 1995 Formation of glasses from liquids and biopolymers.Science 267: 1924–1935

    Article  Google Scholar 

  • Banerjee S, Savalia R T, Dey G K 2001 Glass formation and crystallisation in rapidly solidified zirconium alloys.Mater. Sci. Eng. A304–306: 26–33

    Google Scholar 

  • Busch R, Schneider S, Peker A, Johnson W L 1995 Decomposition and primary crystallisation in undercooled Zr-Ti-Cu-Ni-Be melts.Appl. Phys. Lett. 67: 1544–1546

    Article  Google Scholar 

  • Chattopadhyay K, Ramachandrarao P, Lele S, Anantharaman T R 1976 Crystal structure of a metastable aluminium-nickel phase obtained by splat cooling.Proc. 2nd Int. Conf. on Rapidly Quenched Metals (Cambridge, MA: MIT Press) p. 157

    Google Scholar 

  • Chen H S, Turnbull D 1967 Thermal evidence of a glass transition in gold-silicon-germanium alloy.Appl. Phys. Lett. 10: 284–286

    Article  Google Scholar 

  • Conner R D, Dandliker R B, Johnson W L 1998 Mechanical properties of tungsten and steel fiber reinforced Zr4i.5Ti13.75Cu2.5Ni10Be22.5 metallic glass matrix composites.Acta Mater. 46: 6089–6102

    Article  Google Scholar 

  • Drehman A J, Greer A L, Turnbull D 1982 Bulk formation of metallic glass: Pd40Ni40P20.Appl. Phys. Lett. 41: 716–717

    Article  Google Scholar 

  • Egami T 2002 Nano-glass mechanism of bulk metallic glass formation.Mater. Trans. Jpn. Inst. Met. 43:510–517

    Google Scholar 

  • Egami T, Greer A L, Inoue A, Ranganathan S (eds) 2003Supercooled liquids, the glass transition and bulk metallic glasses (Warrendale, PA: Mater. Res. Soc.)

    Google Scholar 

  • He Y, Poon J, Shiflet G J 1988 Synthesis and properties of metallic glasses that contain aluminum.Science 41: 1640–1642

    Article  Google Scholar 

  • Herold U, Koster U 1978 The influence of metal or metalloid exchange on crystallisation of amorphous Fe-B alloys.Rapidly quenched metals III (ed.) B Cantor (London: Metals Society) vol.1, p. 281

    Google Scholar 

  • Inoue A 1995 High strength bulk amorphousalloys with low critical cling rates (overview).Mater. Trans. Jpn. Inst. Met. 36: 866–875

    Google Scholar 

  • Inoue A 1998Bulk Amorphous alloys — Preparation and fundamental characteristics (Trans. Tech. Publications)

  • Inoue A 1999Bulk amorphous alloys — Practical characteristics and applications (Trans. Tech. Publications)

  • Inoue A 2000 Stabilization of metallic supercooled liquid and bulk amorphous alloys.Acta Mater. 48: 279–306

    Article  Google Scholar 

  • Inoue A, Ohtera K, Tsai A P, Masumoto T 1988 New amorphous alloys with good ductility in Al-Y-M and Al-La-M (M = Fe, Co, Ni or Cu) systems.Jpn. J. Appl. Phys. 27: L280-L282

    Article  Google Scholar 

  • Inoue A, Zhang T, Masumoto T 1989 Al-La-Ni amorphous alloys with a wide supercooled liquid region.Mater. Trans. Jpn. Inst. Met. 12: 965–972

    Google Scholar 

  • Inoue A, Zhang T, Masumoto T 1990 Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region.Mater. Trans. Jpn. Inst. Met. 31: 177–183

    Google Scholar 

  • Inoue A, Nakamura T, Nishiyama N, Masumoto T 1992 Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by high pressure die casting method.Mater. Trans. Jpn. Inst. Met. 33: 937–945

    Google Scholar 

  • Inoue A, Nakamura T, Sugita T, Zhang T, Masumoto T 1993 Bulky La-Al-TM (TM = transition metal) amorphous alloys with high tensile strength produced by high pressure die casting method.Mater. Trans. Jpn. Inst. Met. 34: 351–358

    Google Scholar 

  • Inoue A, Shinohara Y, Gook J S 1995 Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting.Mater. Trans. Jpn. Inst. Met. 36:1427–1433

    Google Scholar 

  • Inoue A, Nishiyama N, Matsuda T 1996 Preparation of bulk glassy Pd40Ni10Cu30P20 alloy of 40mm diameter by water-quenching.Mater. Trans. Jpn. Inst. Met. 37: 181–184

    Google Scholar 

  • Inoue A, Nishiyama N, Kimura H 1997 Preperation and thermal stability of bulk amorphous Pd40Cu30Ni10P20 alloy cylinder of 72mm diameter.Mater. Trans. Jpn. Inst. Met. 38: 179–183

    Google Scholar 

  • Inoue A, Zhang T, Saida J, Matsushita M, Chen M W, Sakurai T 1999 Formation of icosahedral quasicrystalline phase in Zr-Al-Ni-Cu-M (M = Pd, Pt, Au, Ag) systems.Mater. Trans. Jpn. Inst. Met. 40: 1181–1184

    Google Scholar 

  • Inoue A, Fan C, Saida J, Zhang T 2000 High-strength Zr-based bulk amorphous alloys containing nanocrystalline and nanoquasicrystalline particles.Sci. Technol. Adv. Mater. 1: 73–86

    Article  Google Scholar 

  • Inoue A, Yavari A R, Johnson W L, Dauskardt R H 2001Supercooled liquid, bulk glassy and nanocrystalline states of alloy (Warrendale, PA: Mater. Res. Soc.)

    Google Scholar 

  • Johnson W L 1999 Bulk glass-forming metallic alloys: Science and technology.MRS Bull. 24: 42–56

    Google Scholar 

  • Johnson W L 2002 Bulk amorphous alloys-an emerging engineering material.J. Mater. 54: 40–43

    Google Scholar 

  • Johnson W L, Inoue A, Liu C T (eds) 1999Bulk metallic glasses (Warrendale, PA: Mater. Res. Soc.)

    Google Scholar 

  • Kawamura Y, Ohno Y 2001 Superplastic bonding of bulk metallic glasses using friction.Scr. Mater. 45: 279–285

    Article  Google Scholar 

  • Kelton K F 1998 A new model for nucleation in bulk metallic glasses.Philos. Mag. Lett. 11: 337–343

    Article  Google Scholar 

  • Kim J J, Choi Y, Suresh S, Argon A S 2002 Nanocrystallisation during nanoindentation of a bulk amorphous metal alloy at room temperature.Science 295: 654–657

    Google Scholar 

  • Klement W, Willens R H, Duwez P 1960 Non-crystalline structure in solidified gold-silicon alloys.Nature (London) 187: 869–870

    Article  Google Scholar 

  • Koester U, Meinhardt J, Ros S, Liebertz H 1996 Formation of quasicrystals in bulk glass-forming Zr-Cu-Ni-Al alloys.Appl. Phys. Lett. 69: 179–181

    Article  Google Scholar 

  • Kui H W, Greer A L, Turnbull D 1984 Formation of bulk metallic glass by fluxing.Appl. Phys. Lett. 45: 615–616

    Article  Google Scholar 

  • Li C, Ranganathan S, Inoue A 2001 Initial crystallisation processes of Hf-Cu-M (M = Pd, Pt, Ag) amorphous alloys.Acta Mater. 49: 1903–1908

    Article  Google Scholar 

  • Loffler J F, Johnson W L, Wagner W, Thiyagarajan P 2000 Comparison of the decomposition and crystallisation behaviour of Zr and Pd based bulk amorphous alloys.Mater. Sci. Forum 343-346: 179–184

    Article  Google Scholar 

  • Louzguine D V, Ko M S, Ranganathan S, Inoue A 2001 Nanocrystallisation of the Fd — m Ti2Ni type phase in Hf-based metallic glasses.J. Nanosci. Nanotechnol. 1: 185–190

    Article  Google Scholar 

  • Madge S V 1999Mechanical alloying of Zr-based bulk metallic glass-forming alloys. Master of Engineering Thesis, Indian Institute of Science, Bangalore

    Google Scholar 

  • Murty B S, Ranganathan S 1998 Novel materials synthesis by mechanical alloying/milling.Int. Mater. Rev. 43: 1–60

    Google Scholar 

  • Murty B S, Ping D H, Hono K, Inoue A 2000 Influence of oxygen on the crystallisation behaviour of Zr65Cu27.5All7.5 and Zr66.7Cu{33.3} metallic glasses.Acta Mater. 48: 3985–3996

    Article  Google Scholar 

  • Nagendra N, Ramamurty U, Goh T T, Li Y 2000 Effect of crystallinity on the impact toughness of a La-based bulk metallic glass.Acta Mater. 48: 2603–2615

    Article  Google Scholar 

  • Nishiyama N, Inoue A 2002 Glass-forming ability of Pd42.5Cu30Ni7.5P20 alloy with a low critical cooling rate of 0-067 Ks-1.Appl. Phys. Lett. 80: 568–570

    Article  Google Scholar 

  • Pang S J, Zhang T, Asami K, Inoue A 2002 Synthesis of Fe-Cr-Mo-C-B-P bulk metallic glasses with high corrosion resistance.Acta Mater. 50: 489–497

    Article  Google Scholar 

  • Peker A, Johnson W L 1993 A highly processable metallic glass: Zr41.2Ti13.8Cu12-5Ni10Be22.5 Appl. Phys. Lett. 63: 2342–2344

    Article  Google Scholar 

  • Perepezko J H, Hebert R J 2002 Amorphous aluminium alloys-Synthesis and stability.J. Mater. 54: 34–39

    Google Scholar 

  • Pettifor D G 1988 Structure maps in magnetic alloy design.Physica B149: 3–10

    Google Scholar 

  • Raja V S, Kishore, Ranganathan S 1988 Effect of molybdenum and silicon on the electrochemical corrosion behaviour of FeNiB metallic glass.Corrosion 44: 263–270

    Google Scholar 

  • Ramachandra Rao P 1980 On glass formation in metal-metal systems.Z Metallic. 71: 172–177

    Google Scholar 

  • Ramachandra Rao P, Scott M G, Chadwick G A 1972 Constitution and microstructure of Rapidly solidified aluminium-germanium alloys.Philos. Mag. 25: 961–982

    Article  Google Scholar 

  • Ramamurty U, Lee M L, Basu J, Li Y 2002 Embrittlement of a bulk metallic glass due to low temperature annealing.Scr. Mater. 47: 107–111

    Article  Google Scholar 

  • Ranganathan S. Heimendahl M V 1981 The three activation energies with isothermal transformations: Application to metallic glasses.J. Mater. Sci. 16: 2401–2404

    Article  Google Scholar 

  • Sastry GVS, Suryanarayana C, Srivastava O N, Davies H A 1978 Crystallization of an amorphous Al-Pd alloy.Trans. Indian Inst. Met. 31: 292–293

    Google Scholar 

  • Shechtman D, Blech I, Gratias D, Cahn J W 1984 Metallic phase with long range orientational order and no translational symmetry.Phys. Rev. Lett. 53: 183–185

    Article  Google Scholar 

  • Shen T D, Schwarz R B 2001 Bulk ferromagnetic glasses in the Fe-Ni-P-B system.Acta Mater. 49: 837–847

    Article  Google Scholar 

  • Szuecs F, Kim C P, Johnson W L 2001 Mechanical properties of Zr-Ti-Nb-Cu-Ni-Be ductile phase reinforced metallic glass composite.Acta Mater. 49: 1507–1513

    Article  Google Scholar 

  • Tiwari R S, Heimendahl M V, Ranganathan S 1987 On the variation of interlamellar spacing in the crystallisation product of the amorphous alloy Fe40Ni40P14B6.Z. Metallkde. 78: 275–279

    Google Scholar 

  • Turnbull D 1969 Under what conditions can a glass be formed?Contemp. Phys. 10: 473–488

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basu, J., Ranganathan, S. Bulk metallic glasses: A new class of engineering materials. Sadhana 28, 783–798 (2003). https://doi.org/10.1007/BF02706459

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02706459

Keywords

Navigation