Skip to main content
Log in

Three-dimensional modelling of Non-Newtonian fluid flow in a coat-hanger die

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The three-dimensional model of isothermal flow of power-law fluid in a coat-hanger die has been developed using finite element method. The shape of coat-hanger die used in the present model was determined according to the previous analytical design equation which is based on one-dimensional flow model in the manifold and the slot. Because uniform flow rate across the die outlet is most important to achieve uniform thickness of extruded polymer sheet or film, flow rate distribution is mainly examined to determine the valid process condition for the design equation as the design parameters are changed. The effects of fluid property in terms of power-law index and process parameters not considered in one-dimensional design equation such as die inlet size and the presence of land were analyzed. Results show that the manifold angle is the most influencing design parameter on flow rate distribution. When the material of different power-law index from design value is processed, the change of power-law index affects the uniformity of flow rate appreciably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arpin, B., Lafleur, P. G. and Vergnes, B., “Simulation of Polymer Flow through a Coat-Hanger Die: A Comparison of Two Numerical Approaches”,Polym. Eng. Sci.,32, 206 (1992).

    Article  Google Scholar 

  • Booy, M. L., “A Network Flow Analysis of Extrusion Dies and Other Flow Systems”,Polym. Eng. Sci.,22, 432 (1982).

    Article  CAS  Google Scholar 

  • Carley, J. F., “Flow of Melts in Crosshead-Slit Dies; Criteria for Die Design”,J. Appl. Phys.,25, 1118 (1954).

    Article  Google Scholar 

  • Carley, J. F., “Design and Operation of Crosshead Sheeting Dies”,Mod. Plast.,33, 127 (1956).

    Google Scholar 

  • Fortin, M., “Old and New Finite Elements for Incompressible Flows”,Int. J. Num. Meth. Fluids,1, 347 (1981).

    Article  Google Scholar 

  • Gutfinger, C, Broyer, E. and Tadmor, Z., “Analysis of a Cross Head Die with the Flow Analysis Network (FAN) Method”,Polym. Eng. Sci.,15, 383 (1975).

    Google Scholar 

  • Hood, P., “Frontal Solution Program for Unsymmetric Matrices”,Int. J. Num. Meth. Eng.,10, 379 (1976).

    Article  Google Scholar 

  • Huang, C.-C, Tsay, S.-Y. and Wang, Y., “Three-Dimensional Path Line Tracking and Residence Time Distribution in Fishtail Dies”,Polym. Eng. Sci,33, 709 (1993).

    Article  CAS  Google Scholar 

  • Klein, I. and Klein, R., “Computer Modeling of Coat Hanger Dies May be Cheaper for the Long Run”,SPE J.,29, 33 (1973).

    Google Scholar 

  • Lee, K.-Y. and Liu, T.-J., “Design and Analysis of a Dual-Cavity Coat-Hanger Die”,Polym. Eng. Sci.,29, 1066 (1989).

    Article  CAS  Google Scholar 

  • Liu, T.-J., “Fully Developed Flow of Power-Law Fluids in Ducts”,Ind. Eng. Chem. Fundam.,22, 183 (1983).

    Article  CAS  Google Scholar 

  • Liu, T.-J., Hong, C.-N. and Chen, K.-C, “Computer-Aided Analysis of a Linearly Tapered Coat-Hanger Die”,Polym. Eng. Sci.,28, 1517 (1988).

    Article  CAS  Google Scholar 

  • Matsubara, Y., “Geometry Design of a Coat-Hanger Die with Uniform Flow Rate and Residence Time Across the Die Width”,Polym. Eng. Sci.,19, 169 (1979).

    Article  CAS  Google Scholar 

  • Matsubara, Y., “Residence Time Distribution of Polymer Melt in the T-Die”,Polym. Eng. Sci.,20, 212 (1980a).

    Article  CAS  Google Scholar 

  • Matsubara, Y., “Design of Coat-Hanger Sheeting Dies Based on Ratio of Residence Times in Manifold and Slot”,Polym. Eng. Sci.,20, 716 (1980b).

    Article  Google Scholar 

  • Matsubara, Y., “Residence Time Distribution of Polymer Melts in the Linearly Tapered Coat-Hanger Die”,Polym. Eng. Sa.,23, 17 (1983).

    Article  Google Scholar 

  • McKelvey, J.-M. and Ito, K., “Uniformity of Flow from Sheeting Dies”,Polym. Eng. Sci,11, 258 (1971).

    Article  CAS  Google Scholar 

  • Pearson, J. R. A., “Non-Newtonian Flow and Die Design: Part IV. Flat-Film Die Design”,Trans. J. Plastics Inst.,32, 239 (1964).

    Google Scholar 

  • Procter, B., “Flow Analysis in Extrusion Dies”,SPE J.,28, 34 (1972).

    CAS  Google Scholar 

  • Tadmor, Z., Broyer, E. and Gutfinger, C., “Flow Analysis Network (FAN)-A Method for Solving Flow Problems in Polymer Processing”,Polym. Eng. Sci.,14, 660 (1974).

    Article  CAS  Google Scholar 

  • Tadmor, Z. and Gogos, C. G.: “Principles of Polymer Processing”, John Wiley, New York, 1979.

    Google Scholar 

  • Vergnes, B., Saillard, P. and Agassant, J. F., “Non-Isothermal Flow of a Molten Polymer in a Coat-Hanger Die”,Polym. Eng. Sci,24, 980 (1984).

    Article  Google Scholar 

  • Vrahopoulou, E. P., “A Model for Fluid Flow in Dies”,Chem. Eng. Sci.,46, 629 (1991).

    Article  CAS  Google Scholar 

  • Wang, Y., “The Flow Distribution of Molten Polymers in Slit Dies and Coathanger Dies through Three-Dimensional Finite Element Analysis”,Polym. Eng. Sci.,31, 204 (1991a).

    Article  CAS  Google Scholar 

  • Wang, Y., “Extrusion of Rubber Compounds and Highly Filled Thermoplastics through Coathanger Dies”,Int. Polym. Proc.,6, 311 (1991b).

    CAS  Google Scholar 

  • White, F. M., “Viscous Fluid Flow”, McGraw-Hill, New York, 1974.

    Google Scholar 

  • Winter, H. H. and Fritz, H. G., “Design of Dies for the Extrusion of Sheets and Annular Parisons: The Distribution Problem”,Poly. Eng. Sci,26, 543 (1986).

    Article  CAS  Google Scholar 

  • Zienkiewicz, O0. C. and Taylor, R. L., “The Finite Element Method”, 4th ed., McGraw-Hill, London, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Na, S.Y., Kim, D.H. Three-dimensional modelling of Non-Newtonian fluid flow in a coat-hanger die. Korean J. Chem. Eng. 12, 236–243 (1995). https://doi.org/10.1007/BF02705652

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02705652

Key words

Navigation