Skip to main content
Log in

Structural models of vanadate-dependent haloperoxidases and their reactivity

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Vanadium(V) complexes with hydrazone-based ONO and ONN donor ligands that partly model active-site structures of vanadate-dependent haloperoxidases have been reported. On reaction with [VO(acac)2] (Hacac = acetylacetone) under nitrogen, these ligands generally provide oxovanadium(IV) complexes [VO(ONO)X] (X = solvent or nothing) and [VO(acac)(ONN)], respectively. Under aerobic conditions, these oxovanadium(IV) species undergo oxidation to give oxovanadium(V), dioxovanadium (V) or μ-oxobisoxovanadium(V) species depending upon the nature of the ligand. Anionic and neutral dioxovanadium(V) complexes slowly deoxygenate in methanol to give monooxo complexes [VO(OMe)(MeOH)(ONO)]. The anionic complexes [VO2(ONO)]- can also be convertedin situ on acidification to oxohydroxo complexes [VO(OH)(HONO)]+ and to peroxo complexes [VO(O2)(ONO)]-, and thus to the species assumed to be intermediates in the haloperoxidases activity of the enzymes. In the presence of catechol (H2cat) and benzohydroxamic acid (H2bha), oxovanadium (IV) complexes, [VO (acac)(ONN)] gave mixed-chelate oxovanadium(V) complexes [VO(cat)(ONN)] and [VO(bha)(ONN)] respectively. These complexes are not very stable in solution and slowly convert to the corresponding dioxo species [VO2(ONN)] as observed by51V NMR and electronic absorption spectroscopic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pecoraro V L, Slebodnick C and Hamstra B 1998Vanadium complexes: Chemistry, biochemistry and theraeutic applications (ACS Symposium Series) (eds) D C Crans and A S Tracy (Washington, DC: Am. Chem. Soc.) ch. 12

    Google Scholar 

  2. Rehder D 2003Inorg. Chem. Commun. 6 604

    Article  CAS  Google Scholar 

  3. Sakurai H, Kojima Y, Yoshikawa Y, Kawabe K and Yasui H 2002Coord. Chem. Rev. 336 187

    Article  Google Scholar 

  4. Thompson K H, McNeill J H and Orvig C 1999Chem. Rev. 99 2561

    Article  CAS  Google Scholar 

  5. Maurya M R, Khurana S, Shailendra, Azam A, Zhang W and Rehder D 2003Eur. J. Inorg. Chem. 1966

  6. Ligtenbarg A G J, Hage R and Feringa B L 2003Coord. Chem. Rev. 237 89

    Article  CAS  Google Scholar 

  7. Conte V, Furia F D and Licini G 1997Appl. Catal. A157 335

    Google Scholar 

  8. Maurya M R, Kumar M, Titinchi S J J, Abbo H S and Chand S 2003Catal. Lett. 91 86

    Google Scholar 

  9. Maurya M R, Saklani H, Kumar A and Chand S 2004Catal. Lett. 93 121

    Article  CAS  Google Scholar 

  10. Maurya M R, Kumar A, Manikandan P and Chand S 2004Appl. Catal. A45 277

    Google Scholar 

  11. Maurya M R, Saklani H and Agarwal S 2004Catal. Commun. 5 563

    Article  CAS  Google Scholar 

  12. Butler A 1999Bioinorganic catalysis 2nd edn (eds) J Reedijk and E Boiwman (New York: Marcel Dekker) ch. 5

    Google Scholar 

  13. Butler A 1999Coord. Chem. Rev. 187 17

    Article  CAS  Google Scholar 

  14. Rehder D 2001J. Inorg. Biochem. 80 133

    Article  Google Scholar 

  15. Janas Z and Sobota P 2005Coord. Chem. Rev. 249 2133

    Article  CAS  Google Scholar 

  16. Weyand M, Hecht H J. Kei\ M, Liaud M F, Vilter H and Schomburg D 1999J. Mol. Biol. 293 595

    Article  CAS  Google Scholar 

  17. Isupov M I, Dalby A R, Brindley A A, Izumi Y Tanabe T, Murshudov G N and Littlechild J A 2000J. Mol. Biol. 299 1035

    Article  CAS  Google Scholar 

  18. Messershmidt A and Wever R 1996Proc. Natl. Acad. Sci. USA 93 392

    Article  Google Scholar 

  19. Kuchta L, Sivak M, Marek J, Pavelcik F and C∼sny M 1999New J. Chem. 23 43

    Article  CAS  Google Scholar 

  20. Messershmidt A, Prade L and Wever R 1997Bio. Chem. 378 309

    Article  Google Scholar 

  21. Franssen M C R 1994Biocatalysis 10 87

    CAS  Google Scholar 

  22. Franssen M C R 1994Catal. Today 22 441;

    Article  CAS  Google Scholar 

  23. Colpas G J, Hamstra B J, Kampf J W and Pecoraro V L 1996J. Am. Chem. Soc. 118 3469;

    Article  CAS  Google Scholar 

  24. Hamstra B J, Colpas G J and Pecoraro V L 1998Inorg. Chem. 37 949

    Article  CAS  Google Scholar 

  25. Satoni G, Licini G M and Reh dar D 2003Chem. Eur. J. 9 4700

    Article  CAS  Google Scholar 

  26. Smith T S II and Pecoraro V L 2002Inorg. Chem. 41 6754

    Article  CAS  Google Scholar 

  27. Maurya M R 2003Coord. Chem. Rev. 237 163

    Article  CAS  Google Scholar 

  28. Maura M R, Khurana S, Schulzke C and Rehder D 2001Eur. J. Inorg. Chem. 779

  29. Rehder D 1992Transition metal nuclear magnetic resonance (ed.) P S Pregosin (New York: Elsevier) p. 1

    Google Scholar 

  30. Maurya M R, Agarwal S, Bader C, Ebel M and Rehder D 2005Dalton Trans. 537

  31. Plass W, Pohlmann, A and Yozgatli H K 2000J. Inorg. Biochem. 80 181

    Article  CAS  Google Scholar 

  32. Hirao T 1997Chem. Rev. 97 2707

    Article  CAS  Google Scholar 

  33. Maurya M R, Agarwal S, Bader C and Rehder D 2005Eur. J. Inorg. Chem. 147

  34. Maurya M R, Khurna S, Zhang W and Rehder D 2002Eur. J. Inorg. Chem. 3015

  35. Maurya M R, Agarwal S, Abid M, Azam A, Bader C, Ebel M and Rehder D 2006Dalton Trans. 937

  36. Deflon V D, De Oliveira D M, de Sousa G F, Batista A A, Dinelli L R and Castellano E E 2002Z. Anorg. Allg. Chem. 628 140

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurya, M.R. Structural models of vanadate-dependent haloperoxidases and their reactivity. J Chem Sci 118, 503–511 (2006). https://doi.org/10.1007/BF02703947

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703947

Keywords

Navigation