Skip to main content
Log in

Pleurotus sajor-caju HSP100 complements a thermotolerance defect inhsp104 mutantSaccharomyces cerevisiae

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2006

Abstract

A putativeHsp100 gene was cloned from the fungusPleurotus sajor-caju. mRNA expression studies demonstrated that this gene (designatedPsHsp100) is highly induced by high temperature, induced less strongly by exposure to ethanol, and not induced by drought or salinity. Heat shock induction is detectable at 37‡C and reaches a maximum level at 42‡C.PsHsp100 mRNA levels sharply increased within 15 min of exposure to high temperature, and reached a maximum expression level at 2 h that was maintained for several hours. These results indicate that PsHsp100 could work at an early step in thermotolerance. To examine its function,PsHsp100 was transformed into a temperature-sensitivehsp104 deletion mutantSaccharomyces cerevisiae strain to test the hypothesis that PsHSP100 is an protein that functions in thermotolerance. Overexpression of PsHSP100 complemented the thermotolerance defect of thehsp104 mutant yeast, allowing them survive even at 50‡C for 4 h. These results indicate that PsHSP100 protein is functional as an HSP100 in yeast and could play an important role in thermotolerance inP. sajor-caju.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HSPs:

Heat shock proteins

MCM:

mushroom complete medium

ORF:

open reading frame

PCR:

polymerase chain reaction

RT:

reverse transcription

UTR:

untraslated region

References

  • Agarwal M, Sahi C, Katiyar-Agarwal S, Agarwal S, Young T, Gallie D R, Sharma V M, Ganesan K and Grover A 2003 Molecular characterization of rice hsp101: complementation of yeasthsp104 mutation by disaggregation of protein granules and differential expression in indica and japonica rice types;Plant Mol. Biol. 51 543–553

    Article  PubMed  CAS  Google Scholar 

  • Aranda A, Querol A and del Olmo M 2002 Correlation between acetaldehyde and ethanol resistance and expression ofHSP genes in yeast strains isolated during the biological aging of sherry wines;Arch. Microbiol. 177 304–312

    Article  PubMed  CAS  Google Scholar 

  • Cashikar A G, Schirmer E C, Hattendorf D A, Glover J R, Ramakrishnan M S, Ware D M and Lindquist S L 2002 Defining a pathway of communication from the C-terminal peptide-binding domain to the N-terminal ATPase domain in an AAA protein;Mol. Cell 9 751–760

    Article  PubMed  CAS  Google Scholar 

  • Craig E A, Gambill B D and Nelson R J 1993 Heat shock proteins: Molecular chaperones of protein biogenesis;Microbiol. Rev. 57 402–414

    PubMed  CAS  Google Scholar 

  • Georgopoulos C P, Hendrix R W, Casjens S R and Kaiser A D 1973 Host participation in bacteriophage lambda head assembly;J. Mol. Biol. 76 45–60

    Article  PubMed  CAS  Google Scholar 

  • Gething M J and Sambrook J 1992 Protein folding in the cell;Nature (London) 355 33–45

    Article  CAS  Google Scholar 

  • Gottesman S, Squires C, Pichersky E, Carrington M, Hobbs M, Mattick J S, Dalrymple B, Kuramitsu H, Shiroza T, Foster T, Clark W P, Ross B, Squires C L and Maurizi M R1990 Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes;Proc. Natl. Acad. Sci. USA 87 3513–3517

    Article  PubMed  CAS  Google Scholar 

  • Graham G C, Mayers P and Henry R J 1994 A simplified method for the preparation of fungal genomic DNA for PCR and RAPD analysis;Biotechniques 16 48–50

    PubMed  CAS  Google Scholar 

  • Hartl F U, Martin J and Neupert W 1992 Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60;Annu. Rev. Biophys. Biomol. Struct. 21 293–322

    Article  PubMed  CAS  Google Scholar 

  • Hendrick J P and Hartl F U 1993 Molecular Chaperone Functions of Heat-Shock Proteins;Annu. Rev. Biochem. 62 349–384

    Article  PubMed  CAS  Google Scholar 

  • Kandror O, Busconi L, Sherman M and Goldberg A L 1994 Rapid degradation of an abnormal protein inEscherichia coli involves the chaperone groEL and groES;J. Biol. Chem. 269 23575–23582

    PubMed  CAS  Google Scholar 

  • Iwahashi H, Obuchi K, Fujii S and Komatsu Y 1997 Barotolerance is dependent on both trehalose and heat shock protein 104 but is essentially different from thermotolerance inSaccharomyces cerevisiae;Lett. Appl. Microbiol. 25 43–47

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi H, Nwaka S, Obuchi K and Komatsu Y 1998 Evidence for the interplay between trehalose metabolism and Hsp104 in yeast;Appl. Environ. Microbiol. 64 4614–4617

    PubMed  CAS  Google Scholar 

  • Jeong M J, Park S C, Kwon H B and Byun M O 2000 Isolation and characterization of the gene encoding glyceraldehydes-3-phosphate dehydrogenase;Biochem. Biophys. Res. Commun. 278 192–196

    Article  PubMed  CAS  Google Scholar 

  • Lee D H, Sherman M Y and Goldberg A L 1996 Involvement of the molecular chaperone Ydj 1 in ubiquitin-dependent degradation of short-lived and abnormal proteins inSaccharomyces cerevisiae;Mol. Cell Biol. 16 4773–4781

    PubMed  CAS  Google Scholar 

  • Lee G J and Vierling E 2000 A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein;Plant Physiol. 122 189–198

    Article  PubMed  CAS  Google Scholar 

  • Lee Y R, Nagao R T and Key J L 1994 A Soybean 101-kD Heat shock protein complements a yeast HSP104 deletion mutant in acquiring thermo-tolerance;Plant Cell 6 1889–1897

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S 1986 The heat-shock response;Annu. Rev. Biochem. 55 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S and Craig E A 1988 The heat shock proteins;Annu. Rev. Genet. 22 631–677

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S and Kim G 1996 Heat-shock protein 104 expression is sufficient for thermotolerance in yeast;Microbiology 93 5301–5306

    CAS  Google Scholar 

  • Mittler R 2002 Oxidative stress, antioxidants and stress tolerance;Trends Plant Sci. 7 405–410

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R I, Tissieres A and Deorgopoulos C 1990Stress proteins in biology and medicine (New York: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Neumann D, Nover L, Parthier B, Rieger R, Scharf K D, Wollgiehn R and zur Nieden U 1989 Heat shock and other stress response systems of plants;Results Probl. Cell Differ. 16 1–155

    PubMed  Google Scholar 

  • Nieto-Sotelo J, Martinez L M, Ponce G, Cassab G I, Alagon A, Meeley R B, Ribaut J M and Yang R 2002 Maize HSP101 plays important roles in both induced and basal thermotolerance and primary root growth;Plant Cell 14 1621–1633

    Article  PubMed  CAS  Google Scholar 

  • Nilsson B and Anderson S 1991 Proper and improper folding of proteins in the cellular environment;Annu. Rev. Microbiol. 45 607–635

  • Nover L 1991Heat shock response (Boca Raton: CRC Press)

    Google Scholar 

  • Pareek A, Singla S L and Grover A 1995 Immunological evidence for accumulation of two high-molecular-weight (104 and 90 kDa) HSPs in response to different stresses in rice and in response to high temperature stress in diverse plant genera;Plant Mol. Biol. 29 293–301

    Article  PubMed  CAS  Google Scholar 

  • Parsell D A, Kowal A S and Lindquist S 1994Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes;J. Biol. Chem. 269 4480–4487

    PubMed  CAS  Google Scholar 

  • Petko L and Lindquist S 1986 Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination;Cell 45 885–894

    Article  PubMed  CAS  Google Scholar 

  • Piper P W 1993 Molecular events associated with acquisition of heat tolerance by the yeastSaccharomyces cerevisiae;FEMS Microbiol. Rev. 11 339–359

    Article  PubMed  CAS  Google Scholar 

  • Piper P W 1995 The shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap;FEMS Microbiol. Lett. 134 121–127

    Article  PubMed  CAS  Google Scholar 

  • Piper P W, Talreja K, Panaretou B, Moradas-Ferreira P, Byme K, Praekelt U M. Meacock P, Regancq M and Boucherie H 1994 Induction of major heat shock proteins ofSaccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold;Microbiology 140 3031–3038

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Romero J and Corrochano Luis M 2004 The gene for the heat-shock protein HSP100 is induced by blue light and heat-shock in the fungusPhycomyces blakesleeanus;Curr. Genet. 46 295–303

    Article  PubMed  CAS  Google Scholar 

  • Ruis H and Schüller C 1995 Stress signaling in yeast;BioEssays 17 959–965

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsh E F and Maniatis T 2001Molecular cloning: A laboratory manual 3rd edition (New York: Cold Spring Harbor Laboratory Press)

    Google Scholar 

  • Sanchez Y, Taulien J, Borkovich K A and Lindquist S 1992 Hsp104 is required for tolerance to many forms of stress;EMBO J. 11 2357–2364

    PubMed  CAS  Google Scholar 

  • Sanchez Y and Lindquist S 1990 HSP104 required for induced thermotolerance;Science 248 1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Santoro N and Thiele D J 1997 Oxidative stress responses in the yeast; inYeast stress response pp 171–211

  • Schirmer E C, Lindquist S and Vierling E 1994 An Arabidopsis heat shock protein complements a thermotolerance defect in yeast;Plant Cell 6 1899–1909

    Article  PubMed  CAS  Google Scholar 

  • Sherman M Y and Goldberg A L 1996 Involvement of molecular chaperones in intracellular protein breakdown;EXS 77 57–58

    PubMed  CAS  Google Scholar 

  • Singer M A and Lindquist S 1998 Multiple effects of trehalose on protein foldingin vitro andin vivo;Mol. Cell 1 639–648

    Article  PubMed  CAS  Google Scholar 

  • Singla S L and Grover A 1994 Detection and quantitation of a rapidly accumulating and predominant 104 kDa heat shock polypeptide in rice;Plant Sci. 97 23–30

    Article  CAS  Google Scholar 

  • Squires C and Squires C E 1992 The Clp proteins: Proteolysis regulators or molecular chaperones.J. Bacteriol. 174 1081–1085

    PubMed  CAS  Google Scholar 

  • Squires C L, Pedersen S, Ross B M and Squires C 1991 Clp B is theEscherichia coli heat shock protein;J. Bacteriol. 173 4254–4262

    PubMed  CAS  Google Scholar 

  • Vassilev AO, Plesofsky-Vig N and Brambl R 1992 Isolation, partial amino acid sequence, and cellular distribution of heat-shock protein hsp98 fromNeurospora crassa;Biochim. Biophys. Acta 1156 1–6

    PubMed  CAS  Google Scholar 

  • Vierling E 1991 The roles of heat shock proteins in plants;Annu. Rev. Plant Physiol. Plant Mol. Biol. 42 579–620

    Article  CAS  Google Scholar 

  • Young T E, Ling J, Geisler-Lee C J, Tanguay R L, Caldwell C and Gallie D R 2001 Developmental and thermal regulation of the maize heat shock protein, HSP101;Plant Physiol. 127 777–791

    Article  PubMed  CAS  Google Scholar 

  • Zolkiewski M 1999 ClpB cooperates with DnaK, DnaJ, and GrpE in suppressing protein aggregation. A novel multi-chaperone system fromEscherichia coli;J. Biol. Chem. 274 28083–280836

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ill-Min Chung or Soo-Chul Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JO., Jeong, MJ., Kwon, TR. et al. Pleurotus sajor-caju HSP100 complements a thermotolerance defect inhsp104 mutantSaccharomyces cerevisiae . J Biosci 31, 223–233 (2006). https://doi.org/10.1007/BF02703915

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02703915

Keywords

Navigation