Skip to main content
Log in

Fireball during combustion of hydrocarbon fueld releases II. Thermal radiation

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

The processes of radiative heat transfer in a fireball which develops upon ignition of a cloud of hydrocarbon fuel near the Earth’s surface are simulated numerically. The emissive characteristics of combustion products (mixtures of nitrogen dioxide, water vapor, and soot) are described using the weighted-sum-of-gray-gases model with temperature-dependent weighting coefficients. The radiation field in the fireball for individual gray gases is calculated in a diffusion approximation (gases for which the fireball is optically thick) or in a volume emission approximation (gases for which the fireball is optically thin). Results of calculations for propane fireballs with fuel masses of 1 g to 103 kg are presented. The role of scale effects is analyzed by comparing the spatial distributions of the radiative source term for fireballs of different dimensions. It is shown that the radiation of burning clouds of small scale proceeds uniformly over the volume, whereas fireballs of large scale radiate predominantly from the surface. The calculated fraction of energy converting to radiation is in good agreement with literature data. The radiation field outside fireballs and the fluxes on the surface are calculated by the Monte Carlo method. The dose of energy incident on the surface during burning of a fireball is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AIChE/CCPS. Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs, Amer. Inst. Chem. Engineers, New York (1994).

    Google Scholar 

  2. R. W. Prugh, “Quantitative evaluation of fireball hazard,”Process Saf. Progr.,13, No. 2, 83–91 (1994).

    Article  Google Scholar 

  3. Mudan, K. S., Croce, P. A., “Fire hazard calculations for large open hydrocarbon fires,” in:SFPE Handbook of Fire Protection Engineering, Nat. Fire Protection Association, Quincy, MA (1995), pp. 3/197–3/240.

    Google Scholar 

  4. G. M. Makhviladze, J. P. Roberts, and S. E. Yakush, “Fireball during combustion of hydrocarbon fuel releases. I. Structure and lift dynamics,”Fiz. Goreniya Vzryva,35, No. 3 (1999), pp. 7–19.

    Google Scholar 

  5. B. F. Magnussen and B. H. Hjertager, “On the mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion,” in:Sixteenth Symp. (Int.) in Combustion, The Combustion Inst., Pittsburgh, PA (1976), pp. 711–729.

  6. P. A. Tesner, T. D. Snegiriova, and V. G. Knorre, “Kinetics of dispersed carbon formation,”Combust. Flame,17, 253–260 (1971).

    Article  Google Scholar 

  7. S. Galant, D. Grouset, G. Martinez, et al., “Three-dimensional steady parabolic calculations of large-scale methane turbulent diffusion flames to predict flare radiation under cross-wind conditions,” in:Twentieth Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, PA (1984), pp. 531–540.

  8. R. Viskanta, and M. P. Mengüç, “Radiation heat transfer in combustion systems,”Prog. Energ Combust. Sci.,13, 97–160 (1987).

    Article  ADS  Google Scholar 

  9. S. T. Surzhikov, “Four-component numerical simulation model of radiative convective interactions in large-scale oxygen-hydrogen turbulent fireballs,”ASME HTD,335, 401–412 (1996).

    Google Scholar 

  10. S. T. Surzhikov, “Thermal radiation from large-scale oxygen-hydrogen fireballs. Analysis of the problem and main results,”Teplofiz. Vys. Temp.,35, No. 3, 416–423 (1997).

    Google Scholar 

  11. S. T. Surzhikov,Computational Experiment in Developing Radiative Models of the Mechanics of Radiating Gas [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  12. H. C. Hottel and A. F. Sarofim,Radiative Transfer, McGraw-Hill, New York (1967).

    Google Scholar 

  13. M. F. Modest, “The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer,”ASME J., Heat Transfer,113, No. 8, 650–656 (1991).

    ADS  Google Scholar 

  14. M. F. Modest,Radiative Heat Transfer, McGraw-Hill, New York (1993).

    Google Scholar 

  15. J. D. Felske and T. T. Charalampopoulos, “Gray gas weighting coefficients for arbitrary gas-soot mixtures,”Int. J. Heat Mass Transfer,25, No. 12, 1849–1855 ( (1982).

    Article  MATH  Google Scholar 

  16. T. F. Smith, Z. F. Shen, and J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model,”ASME J., Heat Transfer,104, 602–608 (1982).

    Article  Google Scholar 

  17. T. F. Smith, A. M. Al-Turki, K. H. Byun, and T. K. Kim, “Radiative and conductive transfer for a gas/soot mixture between diffuse parallel plates,”J. Thermophys. Heat Transfer,1, No. 1, 50–55 (1987).

    Article  ADS  Google Scholar 

  18. B. N. Chetverushkin,Mathematical Modeling of Problems of Radiating-Gas Dynamics [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  19. S. M. Ermakov and G. A. Mikhailov,Statistical Modeling [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  20. S. T. Surzhikov, “Thermal radiation from large-scale oxygen-hydrogen fireballs. Examination of computational models,”Teplofiz. Vysok Temp.,35, No. 4, 584–593 (1997).

    Google Scholar 

  21. G. M. Makhviladze, J. P. Roberts, and S. E. Yakush, “Formation and burning of gas clouds in accidental discharges into the atmosphere,”Fiz. Goreniya Vzryva,33, No. 2, 23–38 (1997).

    Google Scholar 

  22. G. M. Makhviladze, J. P. Roberts, and S. E. Yakush, “Numerical modelling of fireballs from vertical releases of fuel gases,”Combust. Sci. Technol.,132, 199 (1998).

    Article  Google Scholar 

  23. H. C. Hardee, D. O. Lee, and W. B. Benedick, “Thermal hazards from LNG fireballs,”Combust. Sci. Technol.,17, 189–197 (1978).

    Article  Google Scholar 

  24. G. H. Markstein, “Radiative energy transfer from turbulent diffusion flames,”Combust. Flame,27, 51–63 (1976).

    Article  Google Scholar 

  25. K. S. Mudan, “Thermal radiation hazards from hydrocarbon pool fires,”Prog. Energy Combust. Sci.,10, 59–80 (1984).

    Article  Google Scholar 

  26. G. H. Markstein, “Correlations for smoke points and radiant emission of laminar hydrocarbon diffusion flames,” in:Twentieth Symp. (Int). on Combustion, Combustion Inst., Pittsburgh, PA (1984), pp. 363–370.

  27. J. de Ris, “A scientific approach to flame radiation and material flammability,” in: T. Wakamatsu and Y. Hasemi et al. (eds),2nd IAFSS Int. Symp. on Fire Safety Science, (1988), pp. 29–46.

  28. J. A. Fay, G. J. Desgroseilliers, and D. H. Lewis, “Radiation from burning hydrocarbon clouds,”Combust. Sci. Technol.,20, 141–151 (1979).

    Article  Google Scholar 

  29. W. E. Baker, P. A. Cox, P. S. Westine, J. J. Kulesz, R. A. Strehlow,Explosion Hazards and Evaluation, Elsevier, Amsterdam-Oxford-New York (1983).

    Google Scholar 

  30. W. Marshall,Major Hazards in Chemical Manufacturing [Russian translation], Mir, Moscow (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated fromFizika Goreniya i Vzryva, Vol. 35, No. 4, pp. 12–23, July–August 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makhviladze, G.M., Roberts, J.P. & Yakush, S.E. Fireball during combustion of hydrocarbon fueld releases II. Thermal radiation. Combust Explos Shock Waves 35, 359–369 (1999). https://doi.org/10.1007/BF02674465

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02674465

Keywords

Navigation