Skip to main content
Log in

The substructure of (252)f martensite formed in an Fe- 8Cr- 1 C alloy

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

This work deals with a transmission electron microscopy investigation of plate martensite in an Fe-8Cr-lC alloy, which exhibits a typical (252)f martensite transformation. It was found that macroscopic martensite plates, such as those used for optical microscopy determination of the habit plane and the shape strain, actually consist of many individual small plates having the same crystallographic orientation and habit plane. Individual plates within a macroscopic plate appear to form by auto-catalytic nucleation. The coalescence plane between individual plates is usually parallel to (011)b = (lll)f because the growth of the plates is restricted by stacking faults and twins on (lll)f, formed as a result of accommodation of the shape strain. Deformation of the martensite at the coalescence sites, mainly on the twin system (112)b \([\overline {11} 1]\) b, leads to a complex substructure of the macroscopic plates. Stacking faults and twins in the austenite may be inherited in the martensite, which leads to further complexity. Prior to the coalescence, the substructure of individual martensite plates is simple, and consists of a low density of irregularly distributed twins on (112)b \([\overline {11} 1]\) b and dislocations having Burgers vector ab/2\([\overline {11} 1]\). These defects are probably caused by accommodation deformation. The martensite/austenite interface contains a set of parallel dislocations having a spacing of about 13 A. These dislocations are likely to be screw dislocations with Burgers vector ab/2\([\overline {11} 1]\) = af/2\([\bar 101]\), which accomplish the complementary shear in the phenomenological crystallographic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.B. Greninger and A. R. Troiano:Trans. AIME, 1941, vol. 145, p. 289; and 1949, vol. 185, p. 590.

    Google Scholar 

  2. C.M. Wayman, J. E. Hanafee, and T. A. Read:Ada Met., 1961, vol. 9, p. 912.

    Article  CAS  Google Scholar 

  3. D. P. Dunne and J. S. Bowles:Acta Met., 1969, vol. 17, p. 201.

    Article  CAS  Google Scholar 

  4. S. Jana and C.M. Wayman:Metall. Trans., 1970, vol. 1, p. 2815.

    CAS  Google Scholar 

  5. M. Umemoto and I. Tamura:Proc. Int. Conf. on Martensitic Transformations (ICOMAT-79), Cambridge, MA, 1979, p. 82.

  6. S. Kajiwara:Phil. Mag. A, 1981, vol. 43, p. 1483.

    Article  CAS  Google Scholar 

  7. M.S. Wechsler, D.S. Lieberman, and T. A. Read:Trans. AIME, 1953, vol. 197, p. 1503.

    Google Scholar 

  8. J. S. Bowles and J. K. Mackenzie:Acta Met., 1954, vol. 2, pp. 129, 138, and 224.

    Article  CAS  Google Scholar 

  9. K. Shimizu, M. Oka, and C. M. Wayman:Acta Met., 1970, vol. 18, p. 1005.

    Article  CAS  Google Scholar 

  10. S. Jana and C.M. Wayman:Metall. Trans., 1970, vol. 1, p. 2825.

    CAS  Google Scholar 

  11. Y. Tanaka and K. Shimizu:Trans. JIM, 1980, vol. 21, p. 34.

    CAS  Google Scholar 

  12. R.L. Patterson and CM. Wayman:Acta Met., 1964, vol. 12, p. 1306.

    Article  CAS  Google Scholar 

  13. K. Shimizu, M. Oka, and C. M. Wayman:Acta Met., 1971, vol. 19, p. 1.

    Article  CAS  Google Scholar 

  14. M. Umemoto and I. Tamura:Journal de Physique, Colloque C-4, Supplement no. 12, 1982, vol. 43, p. 551.

    Google Scholar 

  15. M. Oka and C.M. Wayman:Trans. TMS-AIME, 1968, vol. 242, p. 337.

    CAS  Google Scholar 

  16. D.P. Dunne and CM. Wayman:Metall. Trans., 1971, vol. 2, p. 2327.

    Article  CAS  Google Scholar 

  17. A. J. Morton and C. M. Wayman:Acta Met., 1966, vol. 14, p. 1576.

    Article  Google Scholar 

  18. B.C. Muddle, P. Krauklis, and J.S. Bowles:Acta Met., 1976, vol. 24, p. 371.

    Article  CAS  Google Scholar 

  19. D. P. Dautovich and J.S. Bowles:Acta Met., 1972, vol. 20, p. 1137.

    Article  CAS  Google Scholar 

  20. P. R. Howell, A. R. Jones, and B. Ralph:ScriptaMet., 1976, vol. 10, p. 585.

    Article  Google Scholar 

  21. V.l. Izotov and L.M. Utevsky:Fiz. Metal. Metalloved., 1968, vol. 25, no. 1, p. 98.

    CAS  Google Scholar 

  22. E.C. Frank:Acta Met., 1953, vol. 1, p. 15.

    Article  CAS  Google Scholar 

  23. T. Maki and C M. Wayman: Proc. JIM Int. Symp. on “New Aspects of Martensite Transformation”, The Japan Institute of Metals, Kobe, 1976, p. 75.

    Google Scholar 

  24. B.P. J. Sandvik and C.M. Wayman:Metall. Trans. A, 1983, vol. 14A, p. 823.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the University of Illinois

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandvik, B.P.J., Wayman, C.M. The substructure of (252)f martensite formed in an Fe- 8Cr- 1 C alloy. Metall Trans A 14, 2455–2468 (1983). https://doi.org/10.1007/BF02668887

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02668887

Keywords

Navigation