Skip to main content
Log in

Influence of impurity segregation on temper em brittlement and on slow fatigue crack growth and threshold behavior in 300-M high strength steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Interactions between hydrogen embrittlement and temper embrittlement have been examined in a study of fracture and low growth rate (near-threshold) fatigue crack propagation in 300-M high strength steel, tested in humid air. The steel was investigated in an unembrittled condition (oil quenched after tempering at 650°C) and temper embrittled condition (step-cooled after tempering at 650°C). Step-cooling resulted in a severe loss of toughness (approximately 50 pct reduction), without loss in strength, concurrent with a change in fracture mode from micr ovoid coalescence to inter granular. Using Auger spectroscopy analysis, the embrittlement was attributed to the cosegregation of alloying elements (Ni and Mn) and impurity elements (P and Si) to prior austenite grain boundaries. Prior temper embrittlement gave rise to a substantial reduction in resistance to fatigue crack propagation, particularly at lower stress intensities approaching the threshold for crack growth(x0394;K o). At intermediate growth rates (10-5 to 10-3 mmJcycle), propagation rates in both unembrittled and embrittled material were largely similar, and only weakly dependent on the load ratio, consistent with the striation mechanism of growth observed. At near-threshold growth rates (<10−5 to 10−6 mmJcycle), embrittled material exhibited significantly higher growth rates, 30 pct reduction in threshold ΔKo values and intergranular facets on fatigue fracture surfaces. Near-threshold propagation rates (and ΔKo values) were also found to be strongly dependent on the load ratio. The results are discussed in terms of the combined influence of segregated impurity atoms (temper embrittlement) and hydrogen atoms, evolved from crack tip surface reactions with water vapor in the moist air environment (hydrogen embrittlement). The significance of crack closure concepts on this model is briefly described. ntmis]formerly with the Lawrence Berkeley Laboratory, University of California in Berkeley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Low, Jr.: inFracture of Engineering Materials, ASM, 1964, p. 127.

  2. J. R. Low, Jr., D. F. Stein, A. M. Turkalo, and R. P. Laforce:Trans. TMS-AIME, 1968, vol. 242, p. 14.

    CAS  Google Scholar 

  3. H. Ohtani and C. J. McMahon, Jr.:ActaMet., 1975, vol. 23, p. 377.

    CAS  Google Scholar 

  4. J. M. Capus:Rev. Met., 1959, vol. 56, p. 181.

    CAS  Google Scholar 

  5. E. B. Kula and A. A. Anctil:J. Mater., 1969, vol. 4, p. 817.

    Article  CAS  Google Scholar 

  6. J. R. Rellick and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 2439.

    Article  CAS  Google Scholar 

  7. R. O. Ritchie and J. F Knott.Knott: Acta Met., 1973, vol. 21, p. 639.

    Article  CAS  Google Scholar 

  8. R. Bruscato:Weld. J. Suppl., 1970, vol. 49, p. 148-S.

    Google Scholar 

  9. K. Yoshino and C. J. McMahon, Jr.:Met. Trans., 1974, vol. 5, p. 363.

    CAS  Google Scholar 

  10. C. J. McMahon, Jr, C. L. Briant, and S. K. Banerji:Proc. Fourth Int. Conf. on Fracture, Waterloo, Canada, June 1977, vol. 2, p. 363.

    Google Scholar 

  11. .U.R. Viswanathan and S. J. Hudak: inEffect of Hydrogen on Behavior of Materials, A.W. Thompson and I. M. Bernstein, eds., p. 262, 1975. The Metal-lurgical Society of AIME.

  12. R. M. Latanison and H. Opperhauser, Jr.:Met. Trans., 1974, vol. 5, p. 483.

    CAS  Google Scholar 

  13. R. P. Wei and J. D. Landes:Mater. Res. Stand., 1969, vol. 9, p. 25.

    Google Scholar 

  14. F. J. Witt: inPractical Application of Fracture Mechanics to Pressure-Vessel Technology, p. 163, The Institution of Mechanical Engineers, London, 1971.

    Google Scholar 

  15. .J. D. Landes and J. A. Begley: Westinghouse Scientific Paper 76-1E7-JINTF-P3, May 1976, Westinghouse Scientific Laboratories, Pittsburgh, Pa.

  16. R. W. Landgraf, J-D. Morrow, and T. Endo:J. Mater., 1969, vol. 4, p. 176.

    Google Scholar 

  17. R. 0. Ritchie, G. G. Garrett, and J. F. Knott:Int. J. Fract. Mech., 1971, vol. 7, p. 462.

    Google Scholar 

  18. H. Ohtani, H. C. Feng, C. J. McMahon, Jr., and R. A. Mulford:Met. Trans. A, 1976, vol. 7A, p. 87.

    Article  CAS  Google Scholar 

  19. M. Guttmann:Surface Sci., 1975, vol. 52, p. 213.

    Article  Google Scholar 

  20. R. A. Mulford, C. J. McMahon, Jr., D. P. Pope, and H. C. Feng:Met. Trans. A, 1976, vol. 7A, p. 1183.

    CAS  Google Scholar 

  21. C. J. McMahon, Jr, E. Furubayashi, H. Ohtani, and H. C. Feng:ActaMet., 1976, vol. 24, p. 695.

    CAS  Google Scholar 

  22. R. Viswanathan:Met. Trans., 1971, vol. 2, p. 809.

    CAS  Google Scholar 

  23. B. J. Schulz and C. J. McMahon, Jr.: inTemper Embrittlement of Alloy Steels, p. 104, ASTM STP 499, ASTM, Philadelphia, Pa., 1972.

    Google Scholar 

  24. G. Clark, R. 0. Ritchie, and J. F. Knott:Nature Phys. Sci., 1972, vol. 239, p. 104.

    CAS  Google Scholar 

  25. M. Guttmann and P. Krahe:Scr. Met., 1973, vol. 7, p. 93.

    Article  CAS  Google Scholar 

  26. C. L. Smith and J. R. Low, Jr.:Met. Trans., 1974, vol. 5, p. 279.

    CAS  Google Scholar 

  27. W. Steven and K. Balajiva:J. Iron SteelInst., 1959, vol. 193, p. 141.

    CAS  Google Scholar 

  28. P. C. Paris and F. Erdogan:J. Basic Eng., Trans. ASME Series D, 1963, vol. 85, p. 528.

    CAS  Google Scholar 

  29. C. E. Richards and T. C. Lindley:Eng. Fract. Mech., 1972, vol. 4, p. 951.

    Article  CAS  Google Scholar 

  30. R. O. Ritchie:J. Eng. Mater. Tech., Trans. ASME Series H, 1977, vol. 99, p. 194. (Lawrence Berkeley Laboratory, Report No. LBL-5496, Oct. 1976, University of California).

    Google Scholar 

  31. P. C. Paris. R. J. Bucci, E. T. Wessel, W. G. Clark, and T. R. Mager: inStress Analysis and Growth of Cracks, p. 141, ASTM STP 513, ASTM, Philadelphia, Pa., 1972.

    Google Scholar 

  32. R. J. Bucci, W. G. Clark, Jr., and P. C. Paris: itIbid, p. 177.

  33. R. J. Bucci, P. C. Paris, R. W. Hertzberg, R. A. Schmidt, and A. F. Anderson: itIbid, p. 125

  34. 34.R. A. Schmidt and P. C. Paris: inProgress in Flaw Growth and Fracture Toughness Testing, p. 79, ASTM STP 536, ASTM, Philadelphia, Pa, 1972.

    Google Scholar 

  35. P. E. Irving and C. J. Beevers:Met. Trans., 1974, vol. 5, p. 391.

    CAS  Google Scholar 

  36. R. J. Cooke, P. E. Irving, G. S. Booth, and C. J. Beevers:Eng. Fract. Mech., 1975, vol. 7, p. 69.

    Article  CAS  Google Scholar 

  37. J. A. Begley and P. R. Toolin:Int. J. Fract., 1973, vol. 9, p. 243.

    Article  CAS  Google Scholar 

  38. R. 0. Ritchie:Metal Sci., 1977, vol. 11, no. 8J9, in press. (Lawrence Berkeley Laboratory, Report No. LBL-5730, Nov. 1976, University of California.) tory, Report No. LBL-5730, Nov. 1976, University of California.)

  39. V. Weiss and D. N. Lai:Met. Trans., 1974, vol. 5, p. 1946.

    Article  CAS  Google Scholar 

  40. T. Misawa:Corros. Sci., 1973, vol. 13, p. 659.

    Article  CAS  Google Scholar 

  41. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  42. E. D.Hondros:Proc. Roy. Soc. Ser. A, 1965, vol. 286, p. 479.

    Article  CAS  Google Scholar 

  43. R. A. Oriani and P. H. Josephic:ActaMet., 1974, vol. 22, p. 1065.

    CAS  Google Scholar 

  44. W. W. Gerberich and Y. T. Chen:Met. Trans. A, 1975, vol. 6A, p. 271.

    CAS  Google Scholar 

  45. W. Elber: inDamage Tolerance in Aircraft Structures, p. 230, ASTM STP 486, ASTM, Philadelphia, Pa., 1971.

    Google Scholar 

  46. T. C. Lindley and C. E. Richards:Mater. Sci. Eng., 1974, vol. 14, p. 281.

    Article  CAS  Google Scholar 

  47. F. J. Pitoniak, A. F. Grandt, L. T. Montulli, and P. F. Packman:Eng. Fract. Mech., 1974, vol. 6, p. 663.

    Article  CAS  Google Scholar 

  48. T. T. Shih and R. P. Wei:Ibid, 1974, vol. 6, p. 19.

    CAS  Google Scholar 

  49. A. J.McEvily: Metal Sci., 1977, vol.11, no. 8/9, in press.

  50. A. Otsuka, K. Mori, and T. Miyata:Eng. Fract. Mech., 1975, vol. 7, p. 429.

    Article  CAS  Google Scholar 

  51. 0. Buck, J. D. Frandsen, and H. L. Marcus:Ibid, 1975, vol. 7, p. 167.

    Google Scholar 

  52. P. E. Irving, J. L. Robinson, and C. J. Beevers:Ibid, 1975, vol. 7, p. 619.

    CAS  Google Scholar 

  53. P. E. Irving, J. L. Robinson, and C. J. Beevers:Int. J. Fract., 1973, vol. 9, p. 105.

    CAS  Google Scholar 

  54. V. Bachmann and D. Munz:Ibid, 1975, vol. 11, p. 713.

    CAS  Google Scholar 

  55. C. J. McMahon, Jr.:Mater. Sci. Eng, 1977, vol. 25, p. 233.

    Google Scholar 

  56. R. P. Wei and G. W. Simmons:Scr. Met., 1976, vol. 10, p. 153.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Lawrence Berkeley Laboratery, University of California in Berkeley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritchie, R.O. Influence of impurity segregation on temper em brittlement and on slow fatigue crack growth and threshold behavior in 300-M high strength steel. Metall Trans A 8, 1131–1140 (1977). https://doi.org/10.1007/BF02667398

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02667398

Keywords

Navigation