Skip to main content
Log in

Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

We have studied the properties of molecular beam epitaxially (MBE)-grown Erdoped III-V semiconductors for optoelectronic applications. Optically excited Er3+ in insulating materials exhibits optical emission chiefly around 1.54 μm, in the range of minimum loss in silica fiber. It was thought, therefore, that an electrically pumped Er-doped semiconductor laser would find great applicability in fiber-optic communication systems. Exhaustive photoluminescence (PL) characterization was conducted on several of As-based III-V semiconductors doped with Er, on bulk as well as quantum-well structures. We did not observe any Errelated PL emission at 1.54 μm for any of the materials/structures studied, a phenomenon which renders impractical the realization of an Er-doped III-V semiconductor laser. Deep level transient spectroscopy studies were performed on GaAs and AlGaAs co-doped with Er and Si to investigate the presence of any Er-related deep levels. The lack of band-edge luminescence in the GaAs:Er films led us to perform carrier-lifetime measurements by electro-optic sampling of photoconductive transients generated in these films. We discovered lifetimes in the picosecond regime, tunable by varying the Er concentration in the films. We also found the films to be highly resistive, the resistivity increasing with increasing Er-concentration. Intensive structural characterization (double-crys-tal x-ray and transmission electron microscopy) performed by us on GaAs:Er epilayers indicates the presence of high-density nanometer-sized ErAs precipitates in MBE-grown GaAs:Er. These metallic nanoprecipitates probably form internal Schottky barriers within the GaAs matrix, which give rise to Shockley-Read-Hall recombination centers, thus accounting for both the high resistivities and the ultrashort carrier lifetimes. Optoelectronic devices fabricated included novel tunable (in terms of speed and responsivity) high-speed metal-semiconductor-metal (MSM) photodiodes made with GaAs:Er. Pseudomorphic AlGaAs/ InGaAs modulation doped field effect transistors (MODFETs) (for high-speed MSM-FET monolithically integrated optical photoreceivers) were also fabricated using a GaAs:Er buffer layer which substantially reduced backgating effects in these devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V.F. Masterov,Soviet Phys. Semicond. 27, 791 (1993).

    Google Scholar 

  2. H. Ennen, J. Schneider, G. Pomrenke and A. Axmann,Appl. Phys. Lett. 43, 943 (1983).

    Article  CAS  Google Scholar 

  3. H. Ennen, G. Pomrenke, A. Axman, K. Eisele, W. Haydl and J. Schneider,Appl. Phys. Lett. 46, 381 (1985).

    Article  CAS  Google Scholar 

  4. G. Pomrenke, H. Ennen and W. Haydl,J. Appl. Phys. 59,601 (1986).

    Article  CAS  Google Scholar 

  5. G.S. Pomrenke, R.L. Hengehold and Y.K. Yeo,Inst. Phys. Conf. Ser. 1989.

  6. P. Galtier, J.P. Pocholle, M.N. Charasse et al.,Appl. Phys. Lett. 55, 2105 (1989).

    Article  CAS  Google Scholar 

  7. T. Benyattou, D. Seghier, G. Guillot, R. Moncorge, P. Galtier and M.N. Charasse.Appl. Phys. Lett. 58, 2132 (1991).

    Article  CAS  Google Scholar 

  8. J.E. Colon, D.W. Elsaesser, Y.K. Yeo, R.L. Hengehold and G.S. Pomrenke,Appl. Phys. Lett. 63, 216 (1993).

    Article  CAS  Google Scholar 

  9. T. Zhang, Y. Hwang, J. Sun, N.V. Edwards, R.M. Kelbas and P.J. Caldwell,J. Electron. Mater. 22, 1137 (1993).

    CAS  Google Scholar 

  10. A.J. Neuhalfen and B.W. Wessels,Appl. Phys. Lett. 59,2317 (1991).

    Article  CAS  Google Scholar 

  11. A.J. Neuhalfen and B.W. Wessels,Appl. Phys. Lett. 60, 2657 (1992).

    Article  CAS  Google Scholar 

  12. X.Z. Wang, A.J. Neuhalfen and B.W. Wessels,Appl. Phys. Lett. 64, 466 (1994).

    Article  CAS  Google Scholar 

  13. X.Z. Wang and B.W. Wessels,Appl. Phys. Lett. 64, 1537 (1994).

    Article  CAS  Google Scholar 

  14. X.Z. Wang and B.W. Wessels,Appl. Phys. Lett. 65,584(1994).

    Article  CAS  Google Scholar 

  15. X.Z. Wang and B.W. Wessels,Appl. Phys. Lett. 65,845 (1994).

    Article  CAS  Google Scholar 

  16. R.G. Wilson, R.N. Schwartz et al.,Appl. Phys. Lett. 65, 992 (1994).

    Article  CAS  Google Scholar 

  17. W.H. Haydl, H.D. Muller and H. Ennen,Appl. Phys. Lett. 46, 870(1985).

    Article  CAS  Google Scholar 

  18. H. Isshiki, H. Kobayashi, S. Yugo, T. Kimura and T. Ikoma,Appl. Phys. Lett. 58, 484 (1991).

    Article  CAS  Google Scholar 

  19. H. Isshiki, R. Saito, T. Kimura and T. Ikoma,J. Appl. Phys. 70, 6993 (1991).

    Article  CAS  Google Scholar 

  20. T. Kimura and H. Isshiki et al.,J. Appl. Phys. 76, 3714 (1994).

    Article  CAS  Google Scholar 

  21. L.F. Zakharenkov, V.F. Masterov and O.D. Khokhryakova,Soviet Phys. Semicond. 21, 211 (1987).

    Google Scholar 

  22. V.F. Masterov, V.V. Romanov and B.E. Samorukov,Soviet Phys. Semicond. 12, 955 (1978).

    Google Scholar 

  23. A. Stapor and J. Raczynska et al.,Mater. Sci. Forum 12,633 (1986).

    Article  Google Scholar 

  24. G. Jasiolek, J. Raczynska and J. Gorecka,J. Cryst. Growth 78, 105 (1986).

    Article  CAS  Google Scholar 

  25. F. Vantien, E. Bauser and J. Weber,J. Appl. Phys. 61, 2803 (1987).

    Article  Google Scholar 

  26. D. Seghier and T. Benyattou et al.,J. Appl. Phys. 75, 4171 (1994).

    Article  CAS  Google Scholar 

  27. S. Sethi, S. Gupta and P.K. Bhattacharya, Electronic Mate- rials Conf., Boston, June 1992.

  28. K. Takahei, A. Taguchi and Y. Horikoshi,J. Appl. Phys. 76, 4332 (1994).

    Article  CAS  Google Scholar 

  29. S. Gupta, S. Sethi and P.K. Bhattacharya,Appl. Phys. Lett. 62, 1128 (1993).

    Article  CAS  Google Scholar 

  30. C.J. Palmstrom, S. Mounier, T.G. Finstad and P.F. Miceli,Appl. Phys. Lett. 56, 382 (1990).

    Article  Google Scholar 

  31. A.R. Peaker, H. Efoglu, J.M. Langer, A.C. Wright, I. Poole and K.E. Singer, 1993 Spring Mtg. Materials Research Soci- ety, San Francisco, April 1993.

  32. A. Gharavi and G.L. McPherson,Appl. Phys. Lett. 61, 2635 (1994).

    Article  Google Scholar 

  33. B.R. Reddy and P. Venkateswarlu,Appl. Phys. Lett. 64,1327 (1994).

    Article  CAS  Google Scholar 

  34. B.R. Reddy and S.K. Nash-Stevenson,J. Appl. Phys. 76,3896 (1994).

    Article  CAS  Google Scholar 

  35. F. Heine and E. Heumann et al.,Appl. Phys. Lett. 65, 383 (1994).

    Article  CAS  Google Scholar 

  36. D.S. Knowles and H.P. Jenssen,IEEE J. Quant. Elec. 28, 1197(1992).

    Article  CAS  Google Scholar 

  37. C. Li, C. Wyon and R. Moncorge,IEEE J. Quant. Elec. 28, 1209 (1992).

    Article  CAS  Google Scholar 

  38. J.D. Ralston, H. Ennen, P. Wennekers and P. Heisinger et al.,J. Electron. Mater. 19, 555 (1990).

    Article  CAS  Google Scholar 

  39. D.L. Adler, D.C. Jacobson, D.J. Eaglesham and M.A. Marcus et al.,Appl. Phys. Lett. 61, 2181 (1992).

    Article  CAS  Google Scholar 

  40. J.C. Phillips,J. Appl. Phys. 76, 5896 (1994).

    Article  CAS  Google Scholar 

  41. D.J. Eaglesham, J. Michel and E.A. Fitzgerald et al.,Appl. Phys. Lett. 58, 2797 (1991).

    Article  CAS  Google Scholar 

  42. D.V. Lang, A.Y. Cho, A.C. Gossard, M. Ilegems and W. Wiegmann,J. Appl. Phys. 47, 2558 (1976).

    Article  CAS  Google Scholar 

  43. P.M. Mooney,J. Appl. Phys. 67, R1 (1990).

    Article  CAS  Google Scholar 

  44. S. Gupta, M.Y. Frankel, J.A. Valdmanis, J.F. Whitaker, G.A. Mourou, F.W. Smith and A.R. Calawa,Appl. Phys. Lett. 59, 3276(1991).

    Article  CAS  Google Scholar 

  45. F.E. Doany, D. Grischkowsky and C.-C. Chi,Appl. Phys. Lett. 50,460(1987).

    Article  CAS  Google Scholar 

  46. S. Gupta, S. Sethi, P.K. Bhattacharya and S. Williamson, 1993 Spring Mtg. Materials Research Society, San Franciso, April 1993.

  47. S.Y. Chou, Y. Liu, W. Khalil, T.Y. Hsiang and S. Alexandrou,Appl. Phys. Lett. 61, 819 (1992).

    Article  CAS  Google Scholar 

  48. S. Sethi, T. Brock, P.K. Bhattacharya, J. Kim, S. Williamson, D. Craig and J. Nees,IEEE Elec. Dev. Lett. 16, 106 (1995).

    Article  CAS  Google Scholar 

  49. J. Kim, Y.-J. Chan, S. Williamson, J. Nees, S. Wakana, J. Whitaker and D. Pavlidis,GaAs IC Symposium Technical Digest 19, 1992.

  50. J.A. Valdmanis,Electron. Lett. 23, 1308 (1987).

    Article  Google Scholar 

  51. S. Sethi, J. Mansfield and P.K. Bhattacharya,IEEE Electron. Dev. Lett. 16(1995).

  52. H.-P. D. Yang, P. Bhattacharya and Y.-C. Chen,Electron Lett. 30, 598 (1994).

    Article  CAS  Google Scholar 

  53. A. Ezis and D.W. Langer,IEEE Elec. Dev. Lett. 6,494 (1985).

    Google Scholar 

  54. S. Tiwari,Compound Semiconductor Device Physics, (CA: Academic Press, 1992).

    Google Scholar 

  55. J.R. Waldrop,J. Vac. Sci. Technol. B 2, 445 (1984).

    Article  CAS  Google Scholar 

  56. A.C. Warren, J.M. Woodall, J.L. Freeouf, D. Grischkowsky, D.T. Mclnturff, M.R. Melloch and N. Otsuka,Appl. Phys. Lett. 57, 1331 (1990).

    Article  CAS  Google Scholar 

  57. W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su and P. Chye,Phys. Rev. Lett. 44, 420 (1980).

    Article  CAS  Google Scholar 

  58. F.W. Smith, Ph.D. Thesis, Massachusetts Institute of Technology, MA, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sethi, S., Bhattacharya, P.K. Characteristics and device applications of erbium doped III-V semiconductors grown by molecular beam epitaxy. J. Electron. Mater. 25, 467–477 (1996). https://doi.org/10.1007/BF02666622

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02666622

Key words

Navigation