Skip to main content
Log in

Structure and room-temperature deformation of alumina fiber-reinforced aluminum

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Plastic deformation under uniaxial longitudinal tension and compression is investigated for pure aluminum reinforced with a high volume fraction of parallel alumina fibers. The matrix substructure is also examined in transmission electron microscopy. The aim is to study thein situ room-temperature mechanical behavior, particularly the work-hardening rate, of pure aluminum when reinforced with a high volume fraction of chemically inert ceramic reinforcement. The matrix substructure prior to deformation, composed of cells about2 µm in diameter, is similar to that of highly deformed unreinforced aluminum. Measured compressive composite elastic moduli agree with rule of mixture predictions; however, no elastic regime is found during tensile loading. As tensile deformation proceeds above a strain around 0.05 pct, a constant rate of work hardening is reached, in which the matrix contribution is negligible within experimental error. Upon unloading from tensile straining, Bauschinger yielding begins before the composite reaches zero load, as predicted by the rule of mixtures. The matrix substructure after load reversal retains a2- µm cell size but with greater irregularity in the dislocation configurations. Using the rule of mixtures,in situ stress-strain curves are derived for the reinforced aluminum matrix and described by a modified Voce law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hull:Introduction to Composite Materials, Cambridge University Press, Cambridge, United Kingdom, 1981, pp. 81–84.

    Google Scholar 

  2. O.B. Pedersen:Acta Metall., 1983, vol. 31, pp. 1795–1808.

    CAS  Google Scholar 

  3. R.M. Jones:Mechanics of Composite Materials, McGraw-Hill, New York, NY, 1975, pp. 98–127.

    Google Scholar 

  4. T. Christman, A. Needleman, and S. Suresh:Acta Metall., 1989, vol. 37, pp. 3029–50.

    CAS  Google Scholar 

  5. Y. Benveniste and G.J. Dvorak: inOn a Correspondence Between Mechanical and Thermal Effects in Two-Phase Composites, Proc. Conf., G.J. Weng, M. Taya, and H. Abé, eds., Springer-Verlag, New York, NY, 1990, pp. 65–81.

    Google Scholar 

  6. K.K. Chawla:Composite Materials: Science and Engineering, Springer-Verlag, New York, NY, 1987, pp. 178–86.

    Google Scholar 

  7. J.C. Halpin:Primer on Composite Materials: Analysis, Revised Ed., Technomic Publishing Co., Lancaster, PA, 1984, pp. 125–42.

    Google Scholar 

  8. J.W. Hutchinson:Proc. R. Soc. London, 1970, vol. A319, pp. 247–72.

    Google Scholar 

  9. R. Hill:J. Mech. Phys. Solids, 1964, vol. 12, pp. 213–18.

    Google Scholar 

  10. O.B. Pedersen: inDislocations and the Strength of Metallic Composites, Proc. Conf., S.I. Andersen, H. Lilholt, and O.B. Pedersen, eds., Risø National Laboratory, Roskilde, Denmark, 1988, pp. 157–81.

    Google Scholar 

  11. O.B. Pedersen:Acta Metall, 1990, vol. 38, pp. 1201–19.

    CAS  Google Scholar 

  12. O.B. Pedersen: inThermomechanical Hysteresis and Analogous Behavior of Composites, Proc. Conf., G.J. Weng, M. Taya, and H. Abé, eds., Springer-Verlag, New York, NY, 1990, pp. 341–65.

    Google Scholar 

  13. Y.H. Zhao and G.J. Weng: inTheory of Plasticity for a Class of Inclusion and Fiber-reinforced Composites, Proc. Conf., G.J. Weng, M. Taya, and H. Abé, eds., Springer-Verlag, New York, NY, 1990, pp. 599–622.

    Google Scholar 

  14. T. Mura:Micromechanics of Solids, Martinus Nijhoff, The Hague, 1982, pp. 334–88.

    Google Scholar 

  15. J.L. Teply and G.J. Dvorak:J. Mech. Phys. Solids, 1988, vol. 36, pp. 29–58.

    Google Scholar 

  16. G.J. Dvorak and Y.A. Bahei-El-Din:Acta Mech., 1987, vol. 69, pp. 219–41.

    Google Scholar 

  17. M.J. Pindera and J. Aboudi:Int. J. Plastic, 1988, vol. 4, pp. 195–214.

    CAS  Google Scholar 

  18. F.D. Adams: inMicromechanical Modeling of Yielding and Crack Propagation in Unidirectional Metal Matrix Composites, Proc. Conf., P.R. DiGiovanni and N.R. Adsit, eds., ASTM, Philadeplhia, PA, 1988, pp. 93–103.

    Google Scholar 

  19. J. Llorca, A. Needleman, and S. Suresh:Scripta Metall. Mater., 1990, vol. 24, pp. 1203–08.

    CAS  Google Scholar 

  20. J.R. Brockenbrough and S. Suresh:Scripta Metall. Mater., 1990, vol. 24, pp. 325–30.

    CAS  Google Scholar 

  21. J.R. Brockenbrough, S. Suresh, and H.A. Wienecke:Acta Metall. Mater., 1991, vol. 39, pp. 735–52.

    CAS  Google Scholar 

  22. G. Bao, F. Genna, J.W. Hutchinson, and R.M. McMeeking: inModels for the Strength of Ductile Matrix Composites, Proc. Conf., D.L. Anton, P.L. Martin, D.B. Miracle, and R. McMeeking, MRS, San Francisco, CA, 1990, pp. 3–13.

    Google Scholar 

  23. V. Tvergaard:Ada Metall. Mater., 1990, vol. 38, pp. 185–94.

    CAS  Google Scholar 

  24. R.J. Arsenault, N. Shi, C.R. Feng, and L. Wang:Mater. Sci. Eng., 1991, vol. A131, p. 55.

    CAS  Google Scholar 

  25. K. Hashimoto, S. Sekiguchi, and K. Yamada: inShear Properties of MMC by Torsion Tests, Proc. Conf., R.Y. Lin, R.J. Arsenault, G.P. Martins, and S.G. Fishman, eds., TMS, Warrendale, PA, 1989, pp. 551–57.

    Google Scholar 

  26. A. Levy and J.M. Papazian: inElastoplastic Finite Element Analysis of the Effects of Thermal Treatment on Discontinuously Reinforced SiC /Al Composites, Proc. Conf, R.B. Bhagat, A.H. Clauer, P. Kumar, and A.M. Ritter, eds., TMS, Warrendale, PA, 1990, pp. 319–26.

    Google Scholar 

  27. J.M. Papazian and P.N. Adler:Metall. Trans. A, 1990, vol. 21 A, pp. 411–20.

    Google Scholar 

  28. K.S.S. Aradhya and M.K. Surappa:Scripta Metall. Mater., 1991, vol. 25, pp. 817–22.

    CAS  Google Scholar 

  29. T. Christman, A. Needleman, S. Nutt, and S. Suresh:Mater. Sci. Eng., 1989, vol. A107, pp. 49–61.

    CAS  Google Scholar 

  30. V. Tvergaard: inMetal Matrix Composites—Processing, Microstructure and Properties, 12th Risø Int. Symp. on Materials Science, Proc. Conf., N. Hansen, D. Juul-Jensen, T. Leffers, H. Lilholt, T. Lorentzen, A.S. Pedersen, O.B. Pedersen, and B. Ralph, eds., Ris0 National Laboratory, Roskilde, Denmark, 1991, pp. 173–88.

    Google Scholar 

  31. H.J. Böhm: D. Tech. Wiss. Thesis, Technical University of Vienna, 1991.

  32. H.J. Böhm and F.G. Rammerstorfer:Mater. Sci. Eng., 1991, vol. A135, pp. 185–88.

    Google Scholar 

  33. A. Kelly and H. Lilholt:Phil. Mag., 1969, vol. 20, pp. 311–28.

    CAS  Google Scholar 

  34. W.S. Miller and F.J. Humphreys:Scripta Metall. Mater., 1991, vol. 25, pp. 33–38.

    CAS  Google Scholar 

  35. W.S. Miller and F.J. Humphreys: inStrengthening Mechanisms in Metal Matrix Composites, Proc. Conf., P.K. Liaw and M.N. Gungor, eds., TMS, Indianapolis, IN, 1990, pp. 517–41.

    Google Scholar 

  36. S.M. Pickard and B. Derby:Acta Metall. Mater., 1990, vol. 38, pp. 2537–52.

    CAS  Google Scholar 

  37. R.E. Lee and S.J. Harris:J. Mater. Sci., 1974, vol. 9, pp. 359–68.

    CAS  Google Scholar 

  38. S.V. Kamat, J.P. Hirth, and R. Mehrabian:Acta Metall., 1989, vol. 37, pp. 2395–2402.

    CAS  Google Scholar 

  39. J.J. Lewandowski, D.S. Luiu, and C. Liu:Scripta Metall. Mater., 1991, vol. 25, pp. 21–26.

    CAS  Google Scholar 

  40. J. Bevk, W.A. Sunder, G. Dublon, and D.E. Cohen: inIn situ Composites IV, F.D. Lemkey, H.E. Cline, and M. McLean, eds., Elsevier, North Holland, New York, NY, 1982, pp. 121–32.

    Google Scholar 

  41. P.D. Funkenbusch and T.H. Courtney:Scripta Metall., 1981, vol. 15, pp. 1349–54.

    CAS  Google Scholar 

  42. P.D. Funkenbusch and T.H. Courtney:Acta Metall., 1985, vol. 33, pp. 913–22.

    CAS  Google Scholar 

  43. G.A. Chadwick:Acta Metall, 1976, vol. 24, pp. 1137–46.

    CAS  Google Scholar 

  44. C.J. Davidson, I.O. Smith, and G.A. Chadwick:Ada Metall., 1980, vol. 28, pp. 61–73.

    CAS  Google Scholar 

  45. G. Garmong and L.A. Shepard:Metall. Trans., 1971, vol. 2, pp. 175–80.

    CAS  Google Scholar 

  46. H.R. Bertorello and H. Biloni:Metall. Trans., 1972, vol. 3, pp. 73–82.

    CAS  Google Scholar 

  47. T.R. McNelley, G.R. Edwards, and O.D. Sherby:Acta Metall., 1977, vol. 25, pp. 117–24.

    CAS  Google Scholar 

  48. A.R. Champion, W.H. Krueger, H.S. Hartmann, and A.K. Dhingra: inFiber FP Reinforced Metal Matrix Composites, Proc. Conf., B. Noton, R.A. Signorelli, K.N. Street, and L.N. Phillips, eds., Toronto, TMS, Warrendale, PA, 1978, pp. 883–904.

    Google Scholar 

  49. A.K. Dhingra:Phil. Trans. R. Soc. London, 1980, vol. 294, pp. 559–64.

    CAS  Google Scholar 

  50. A. Pattnaik, M.J. Koczak, and H.C. Rogers: inCompressive Failure Behavior of FP Alumina/Aluminum Composites, Proc. Conf, D. Kuhlmann-Wilsdorf, ed., St. Louis, MI, TMS/AIME, Warrendale, PA, 1978, pp. 261–82.

    Google Scholar 

  51. W.H. Kim, M.J. Koczak, and A. Lawley: inEffects of Isothermal and Cyclic Exposures on Interface Structure and Mechanical Properties of FPα-Al 2O3/Aluminum Composites, Proc. Conf., D. Kuhlmann-Wilsdorf, ed., St. Louis, MI, TMS/AIME, Warrendale, PA, 1978, pp. 41–53.

    Google Scholar 

  52. W.H. Hunt: inInterfacial Zones and Mechanical Properties in Continuous Fiber FP/Al-Li Metal Matrix Composites, Proc. Conf, A.K. Dhingra and S.G. Fishman, ed., New Orleans, LA, TMS, Warrendale, PA, 1986, pp. 3–25.

    Google Scholar 

  53. J.T. Evans:Acta Metall., 1986, vol. 34, pp. 2075–83.

    CAS  Google Scholar 

  54. H.R. Shetty and T.-W. Chou:Metall. Trans. A, 1985, vol. 16A, pp. 853–64.

    CAS  Google Scholar 

  55. R. Elliott:Eutectic Solidification Processing — Crystalline and Glassy Alloys, Butterworth’s, London, 1983, pp. 309–18.

    Google Scholar 

  56. O. Yanagisawa, T. Yano, T. Sagahara, and M. Ohmori:Trans. Jpn. Inst. Met., 1985, vol. 26 (3), pp. 160–66.

    Google Scholar 

  57. R.W. Hertzberg, F.D. Lemkey, and J.A Ford:Trans. Am. Inst. Mining Metall. Eng., 1965, vol. 233, pp. 342–54.

    CAS  Google Scholar 

  58. Fiber FP-Technical Data Sheet E-56612, E.I. DuPont de Nemours and Co., Inc., Wilmington, DE.

  59. M.R. Pinnel and A. Lawley:Metall. Trans., 1970, vol. 1, pp. 1337–48.

    CAS  Google Scholar 

  60. A. Pattnaik and A. Lawley:Metall. Trans., 1974, vol. 5, pp. 111–22.

    CAS  Google Scholar 

  61. R.W. Heckel, R.J. Zaehring, and H.P. Cheskis:Metall. Trans., 1972, vol. 3, pp. 2507–13.

    CAS  Google Scholar 

  62. H.P. Cheskis and R.W. Heckel: inIn Situ Measurements of Deformation Behavior of Individual Phases in Composites by X-Ray Diffraction, Proc. Conf., ASTM, Philadelphia, PA, 1968, pp. 76–91.

    Google Scholar 

  63. H.P. Cheskis and R.W. Heckel:Metall. Trans., 1970, vol. 1, pp. 1931–42.

    CAS  Google Scholar 

  64. J.R. Hancock and J.C. Grosskreutz:Metal Matrix Composites, ASTM STP 438, ASTM, Philadelphia, PA, 1968, pp. 134–49.

    Google Scholar 

  65. J.A. Isaacs, F. Taricco, V.J. Michaud, and A. Mortensen:Metall. Trans. A, 1991, vol. 22A, pp. 2855–62.

    CAS  Google Scholar 

  66. J.A. Isaacs: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1991.

    Google Scholar 

  67. A. Kelly and N.H. Macmillan:Strong Solids, Clarendon Press, Oxford, United Kingdom, 1986, p. 289.

    Google Scholar 

  68. M.E. Cunningham, S.V. Schoultz, and J.M. Toth:Recent Advances in Composites in the United States and Japan, ASTM STP 864, 1985, J.R. Vinson and M. Taya, eds., ASTM, Philadelphia, PA, pp. 253–62.

    Google Scholar 

  69. B. Roebuck, T.A.E. Gorley, and L.N. McCartney:Mater. Sci. Eng., 1989, vol. 5, pp. 105–17.

    CAS  Google Scholar 

  70. G.H. Geiger and D.R. Poirier:Transport Phenomena in Metallurgy, Addison-Wesley, Reading, MA, 1973, pp. 260 and 290–304.

    Google Scholar 

  71. M.N. Gungor, J.A. Cornie, and M.C. Flemings: inThe Response of Microstructures of Metal Matrix Composites to Solidification Time, Proc. Conf., A.K. Dhingra and S.G. Fishman, eds., New Orleans, LA, TMS, Warrendale, PA, 1986, pp. 121–35.

    Google Scholar 

  72. A. Mortensen: inSolidification of Reinforced Metals, Proc. Conf., P.K. Rohatgi, ed., Indianapolis, IN, TMS, Warrendale, PA, 1989, pp. 1–21.

    Google Scholar 

  73. V.J. Michaud: Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1991.

    Google Scholar 

  74. H. Duker and W. Schlette: inIonic Bombardment: Theory and Applications, J.J. Trillat, ed., Science Publishers Inc., Gordon and Breach, New York, NY, 1964, pp. 119–30.

    Google Scholar 

  75. M.J. Kim and R.W. Carpenter:Ultramicroscopy, 1987, vol. 21, p. 327.

    CAS  Google Scholar 

  76. K. Barmak, D.A. Rudman, and S. Foner:J. Electron Microsc. Techn., 1990, vol. 16, p. 249.

    CAS  Google Scholar 

  77. L.F. Mondolfo:Aluminum Alloys: Structure and Properties, Butterworth’s, London, 1977, pp. 68–81.

    Google Scholar 

  78. F.J. Humphreys:Deformation and Annealing Mechanisms in Discontinuously Reinforced Metal Matrix Composites, Proc. Conf., S.I. Andersen, H. Lilholt, and O.B. Pedersen, eds., Risø National Laboratory, Roskilde, Denmark, 1988, pp. 51–74.

    Google Scholar 

  79. R.J. Arsenault and N. Shi:Mater. Sci. Eng., 1986, vol. 81, pp. 175–87.

    CAS  Google Scholar 

  80. R.J. Arsenault:Composites ’86: Recent Advances in Japan and the United States, Proc. Japan-US CCM-3, K. Kawata, S. Umekawa, and A. Kobayashi, eds., Japan Society for Composite Materials, Tokyo, 1986, pp. 521–27.

    Google Scholar 

  81. R.J. Arsenault and S.B. Wu:Scripta Metall. Mater., 1988, vol. 22, pp. 767–72.

    CAS  Google Scholar 

  82. T. Hasegawa, T. Yakou, and S. Karashima:Mater. Sci. Eng., 1975, vol. 20, pp. 267–76.

    CAS  Google Scholar 

  83. C.T. Young, T.J. Headley, and J.L. Lytton:Mater. Sci. Eng., 1986, vol. 81, pp. 391–407.

    CAS  Google Scholar 

  84. T. Hasegawa and U.F. Kocks:Acta Metall., 1979, vol. 27, pp. 1705–16.

    CAS  Google Scholar 

  85. T. Hasegawa, T. Yakou, and U.F. Kocks:Mater. Sci. Eng., 1986, vol. 81, pp. 189–99.

    CAS  Google Scholar 

  86. R.J. Arsenault, L. Wang, and C.R. Feng:Acta Metall. Mater., 1991, vol. 39, pp. 47–57.

    CAS  Google Scholar 

  87. I. Barker, N. Hansen, and B. Ralph:Mater. Sci. Eng., 1989, vol. Al 13, pp. 449–54.

    Google Scholar 

  88. G. Ferron and M. Mliha-Touati:Acta Metall., 1987, vol. 35, pp. 1281–88.

    CAS  Google Scholar 

  89. Y. Lan, H.J. Klaar, and W. Dahl:Scripta Metall., 1990, vol. 24, pp. 337–42.

    CAS  Google Scholar 

  90. M.A. Meyers and K.K. Chawla:Mechanical Metallurgy, Principles and Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984, p. 257.

    Google Scholar 

  91. L.F. Mondolfo:Aluminum Alloys: Structure and Properties, Butterworth’s, London, 1977, pp. 68–81.

    Google Scholar 

  92. P. Guyot and G.M. Raynaud:Acta Metall. Mater., 1991, vol. 39, pp. 217–322.

    Google Scholar 

  93. M. Taya and R.J. Arsenault:Metal Matrix Composites, Thermomechanical Properties, Pergamon Press, Oxford, United Kingdom, 1989, pp. 51–63.

    Google Scholar 

  94. H.J. Frost and M.F. Ashby:Deformation Mechanism Maps, Pergamon Press, Oxford, United Kingdom, 1982, pp. 1281–88.

    Google Scholar 

  95. M.F. Ashby: Phil. Mag., 1970, vol. 21, pp. 399–424.

    CAS  Google Scholar 

  96. R.J. Arsenault:Mater. Sci. Eng., 1984, vol. 64, pp. 171–81.

    CAS  Google Scholar 

  97. D.C. Dunand and A. Mortensen:Acta Metall. Mater., 1991, vol. 39, pp. 127–39.

    CAS  Google Scholar 

  98. B.D. Cullity:Elements of X-Ray Diffraction, 2nd ed., 1978, Addison-Wesley Publishing Co., Reading, MA, p. 506.

    Google Scholar 

  99. F. Schuh and M. von Heimenthal:Z. Metallkd., 1974, vol. 65, pp. 346–52.

    CAS  Google Scholar 

  100. S.S. Hecker and M.G. Stout: inDeformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, OH, 1984, pp. 1–47.

    Google Scholar 

  101. R. Hill:J. Mech. Phys. Solids, 1964, vol. 12, pp. 199–212.

    Google Scholar 

  102. T.A. Trozera, O.D. Sherby, and J.E. Dorn:Trans. ASM, 1957, vol. 49, pp. 173–88.

    Google Scholar 

  103. J.F. Mulhern, T.G. Rogers, and A.J.M. Spencer:J. Inst. Math. Applic., 1967, vol. 3, pp. 21–40.

    Google Scholar 

  104. A. Lasalmonie and J.W. Martin:Scripta Metall., 1974, vol. 8, pp. 377–82.

    CAS  Google Scholar 

  105. L.S. Sigl and H.E. Exner:Mater. Sci. Eng., 1989, vol. A108, pp. 121–29.

    CAS  Google Scholar 

  106. U.F. Kocks:Trans. ASME-J. of Eng. Mater. Tech., 1976, vol. 98, pp. 76–85.

    CAS  Google Scholar 

  107. D.J. Lloyd:Met. Sci., 1980, vol. 14, pp. 193–98.

    CAS  Google Scholar 

  108. M.A. Meyers and K.K. Chawla:Mechanical Metallurgy, Principles and Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1984, p. 374.

    Google Scholar 

  109. S. Howe and C. Elbaum:Phil. Mag., 1961, vol. 6, pp. 37–48.

    CAS  Google Scholar 

  110. T. Hasegawa and U.F. Kocks:Scripta Metall., 1980, vol. 14, pp. 1083–87.

    CAS  Google Scholar 

  111. T. Hasegawa, T. Yakou, M. Shimizu, and S. Karashima:Trans. Jpn. Inst. Met., 1976, vol. 17, pp. 414–18.

    CAS  Google Scholar 

  112. M.G. Stout and A.D. Rollett:Metall. Trans. A, 1990, vol. 21A, pp. 3201–13.

    CAS  Google Scholar 

  113. T. Yakou, T. Hasegawa, E. Shimokawa, and S. Karashima:Trans. Jpn. Inst. Met., 1977, vol. 18, pp. 25–30.

    CAS  Google Scholar 

  114. U.F. Kocks, T. Hasegawa, and R.O. Scattergood:Scripta Metall., 1980, vol. 14, pp. 449–54.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with the Department of Materials Science and Engineering, Massachusetts Institute of Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacs, J.A., Mortensen, A. Structure and room-temperature deformation of alumina fiber-reinforced aluminum. Metall Trans A 23, 1207–1219 (1992). https://doi.org/10.1007/BF02665052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02665052

Keywords

Navigation