Skip to main content
Log in

Thermodynamics for arsenic and antimony in copper matte converting—computer simulation

  • Published:
Metallurgical Transactions B Aims and scope Submit manuscript

Abstract

Thermodynamic data for arsenic and antimony and their sulfide and oxide gases have been critically reviewed and compiled. The entropy values for AsS(g), SbS(g), and BiS(g) have been recalculated based on a statistical thermodynamic method. The standard heat of formation and entropy of As2O3(g) have been newly assessed to be △H 0298 = −81,500 cal/mole and S 0298 = 81.5 cal/deg/mole. Copper matte converting has been mathematically described using the stepwise equilibrium simulation technique together with quadratic approximations of oxygen and magnetite solubilities in molten mattes. A differential equation for the volatilization of arsenic and antimony has been derived and solved for successive reaction microsteps, whereby the volatilization, slagging, and alloying of the minor elements in copper matte converting have been examined as functions of reaction time and other process variables. Only the first (slag-making) stage of converting is responsible for the elimination of arsenic and antimony by volatilization. Arsenic volatilizes mainly as AsS(g) and AsO(g), with As2(g) also contributing when initial mattes are unusually rich in arsenic (above 0.5 pct arsenic). Antimony volatilizes chiefly as SbS(g), and the contributions of other gases such as SbO(g) and Sb(g) always remain negligibly low. The results of the stepwise equilibrium simulation compare favorably with the industrial operating data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.C. Chaubal and M. Nagamori:Metall. Trans. B, 1983, vol. 14B, pp. 303–06.

    Article  ADS  CAS  Google Scholar 

  2. K. H. Lau, R. D. Brittain, and D. L. Hildenbrand:J. Phys. Chem., 1982, vol. 86, pp. 4429–32.

    Article  CAS  Google Scholar 

  3. K. H. Lau, R. H. Lamoreaux, and D. L. Hildenbrand:Metall. Trans. B, 1983, vol. 14B, pp. 253–58.

    Article  ADS  CAS  Google Scholar 

  4. R. D. Brittain, K. H. Lau, R. H. Lamoreaux, and D. L. Hildenbrand:in Advances in Sulfide Smelting, vol. I, Basic Principles, H. Y. Sohn, D. B. George, and A. D. Zunkel, eds., TMS-AIME, Warrendale, PA, 1983, pp. 197–215.

    Google Scholar 

  5. M. Hino, J. M. Toguri, and M. Nagamori:Can. Met. Quart., 1986, vol. 25, no. 2, pp. 195–97.

    CAS  Google Scholar 

  6. M. Hino and T. Azakami:Metall. Review of MMIJ, 1986, vol. 3, no. 1, pp. 61–78.

    Google Scholar 

  7. M. Hino and J.M. Toguri:Metall. Trans. B, 1987, vol. 18B, pp. 189–94.

    Article  ADS  CAS  Google Scholar 

  8. M. Nagamori and P.J. Mackey:Metall. Trans. B, 1978, vol. 9B, pp. 255–65.

    Article  ADS  CAS  Google Scholar 

  9. P.C. Chaubal and M. Nagamori:Metall. Trans. B, 1982, vol. 13B, pp. 339–48.

    Article  ADS  CAS  Google Scholar 

  10. P.C. Chaubal, M. Nagamori, and H. Y. Sohn:Can. Metall. Quart., 1984, vol. 23, pp. 405–11.

    CAS  Google Scholar 

  11. M. Nagamori and P.C. Chaubal:Metall. Trans. B, 1982, vol. 13B, pp. 319–29.

    Article  ADS  CAS  Google Scholar 

  12. JANAF Thermochemical Tables, 2nd ed., Nat. Bur. Standards, U.S. Dept. of Comm., Washington, DC, 1971.

  13. D. D. Wagman, W. H. Evans, V. B. Parker, I. Harlow, S. M. Bailey, and R. H. Schumm: Nat. Bur. Standards, Technical Note 270-3, U.S. Government Printing Office, Washington, DC, 1968.

    Google Scholar 

  14. J. Drowart, S. Smoes, and A. Vanderauwera-Mahieu:J. Chem. Thermodyn., 1978, vol. 10, pp. 453–64.

    Article  CAS  Google Scholar 

  15. R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelley, and D. D. Wagman:Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, OH, 1973.

    Google Scholar 

  16. K. P. Huber and G. Herzberg:Molecular Spectra and Molecular Structure, Van Nostrand, Princeton, NJ, 1979, vol. 4.

    Google Scholar 

  17. M. Hino, M. Nagamori, and J. M. Toguri:Metall. Trans. B, 1986, vol. 17B, pp. 913–14.

    Article  ADS  CAS  Google Scholar 

  18. K. K. Kelley and E. G. King: U.S. Bureau of Mines, Bull. 592, U.S. Government Printing Office, Washington, DC, 1961.

  19. K.K. Kelley: U.S. Bureau of Mines, Bull. 584, U.S. Government Printing Office, Washington, DC, 1960.

  20. A.D. Mah: U.S. Bureau of Mines, RI 8671, 1982.

  21. K. C. Mills:Thermodynamic Data for Inorganic Sulfides, Selenides and Tellurides, Butterworth’s, London, 1974.

    Google Scholar 

  22. S. N. Sinha and M. Nagamori:Metall. Trans. B, 1982, vol. 13B, pp. 461–70.

    Article  ADS  CAS  Google Scholar 

  23. R.D. Brittain, K. H. Lau, and D.L. Hildenbrand:J. Phys. Chem., 1982, vol. 86, pp. 5072–75.

    Article  CAS  Google Scholar 

  24. N. Chakraborti and D.C. Lynch:Metall. Trans. B, 1983, vol. 14B, pp. 239–51.

    Article  ADS  CAS  Google Scholar 

  25. E.H. Baker:Trans. Inst. Min. Metall., Sec. C, 1974, vol. 83, pp. C237–40.

    CAS  Google Scholar 

  26. O. Kubaschewski and C. B. Alcock:Metallurgical Thermochemistry, 5th ed., Pergamon Press, New York, NY, pp. 191–92.

  27. S. Goto, O. Ogawa, and C.T. Nae:Nippon Kogyo Kaishi, 1982, vol. 98, pp. 436–40.

    CAS  Google Scholar 

  28. M. Nagamori, P. J. Mackey, and P. Tarassoff:Metall. Trans. B, 1975, vol. 6B, pp. 295–301.

    Article  ADS  CAS  Google Scholar 

  29. Y. Takeda, S. Ishiwata, and A. Yazawa:Trans. Japan Inst. of Metals, 1983, vol. 24, pp. 518–28.

    CAS  Google Scholar 

  30. M. Hino and J.M. Toguri:Metall. Trans. B, 1987, vol. 18B, pp. 189–94.

    Article  ADS  CAS  Google Scholar 

  31. W. A. Krivsky and R. Schuhmann:Trans. AIME, 1957, vol. 209, pp. 981–88.

    Google Scholar 

  32. S. N. Sinha, H. Y. Sohn, and M. Nagamori:Metall. Trans. B, 1984, vol. 15B, pp. 441–49.

    Article  ADS  CAS  Google Scholar 

  33. S. N. Sinha, H. Y. Sohn, and M. Nagamori:Metall. Trans. B, 1984, vol. 15B, pp. 595–98.

    Article  ADS  CAS  Google Scholar 

  34. S. N. Sinha, H. Y. Sohn, and M. Nagamori:Metall. Trans. B, 1985, vol. 16B, pp. 53–59.

    Article  ADS  CAS  Google Scholar 

  35. A. Roine and H. Jalkanen:Metall. Trans. B, 1985, vol. 16B, pp. 129–41.

    Article  ADS  CAS  Google Scholar 

  36. K. Itagaki, M. Hino, and A. Yazawa:Erzmetall., 1983, vol. 36, pp. 59–64.

    CAS  Google Scholar 

  37. A. Roine:Metall. Trans. B, 1987, vol. 18B, pp. 203–12.

    Article  ADS  CAS  Google Scholar 

  38. P. Spira and N.J. Themelis:J. Metals, 1969, vol. 21, no. 4, pp. 35–42.

    CAS  Google Scholar 

  39. M. Nagamori:Metall. Review of MMIJ, 1986, vol. 3, no. 3, pp. 26–41.

    CAS  Google Scholar 

  40. F. Bor and P. Tarassoff:Can. Met. Quart., 1971, vol. 10, pp. 267–71.

    CAS  Google Scholar 

  41. J.A. Vogt, P.J. Mackey, and G.C. Balfour:Copper and Nickel Converters, R. E. Johnson, ed., TMS-AIME, Warrendale, PA, 1979, pp. 357–90.

    Google Scholar 

  42. F. E. Lathe and L. Hodnett:Trans. TMS-AIME, 1958, vol. 216, pp. 603–17.

    Google Scholar 

  43. O. Herneryd, O.A. Sundstrom, and A. Norro:J. Metals, 1954, vol. 6, no. 3, pp. 330–37.

    Google Scholar 

  44. D. B. George, J. W. Donaldson, and R. E. Johnson: inWorld Mining and Metals Technology, Proceedings of the Joint MMIJ-AIME Meeting, Denver, CO, A. Weiss, ed., AIME, New York, NY, 1976, vol. 1, pp. 534–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly Assistant Professor, Department of Metallurgy and Metallurgical Engineering, University of Utah, Salt Lake City, Utah 84112

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaubal, P.C., Nagamori, M. Thermodynamics for arsenic and antimony in copper matte converting—computer simulation. Metall Trans B 19, 547–556 (1988). https://doi.org/10.1007/BF02659145

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02659145

Keywords

Navigation