Skip to main content
Log in

The activation energy for lattice Self-Diffusion and the Engel-Brewer Theory

  • Transport Phenomena
  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A phenomenological formula for the calculation of the activation energy for lattice self-diffusion is proposed. Use of the Engel-Brewer theory to determine the valence of an element provides an unambiguous means of calculating the activation energy from the formulaQ = RTm(16 +V), where R is the gas constant,T m the melting temperature, andV the Engel-Brewer valence [1 for body-centered cubic (bcc) structures, 2 for close-packed hexagonal (cph) structures and 3 for face-centered cubic (fcc) structures]. The approach works well for the great majority of metals and correctly predicts the activation energy for diffusion in fcc argon and xenon. Dif-fusion coefficients for elements with other structures, elements with anomalous diffusion coef-ficients and semiconductors, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.M. Brown and M.F. Ashby:Acta Metall., 1980, vol. 28, pp. 1085–1101.

    Article  CAS  Google Scholar 

  2. Stanislaw Mrowec:Defects and Diffusion in Solids—An Introduction, Materials Science Monograph 5, Elsevier Scientific Publishing Co., New York, NY, 1980, pp. 223–29.

    Google Scholar 

  3. Oleg D. Sherby and Massoud T. Simnad:Trans. Q., ASM, 1961, vol. 54, pp. 227–40.

    CAS  Google Scholar 

  4. A.D. Le Claire:Diffusion in Body Centered Cubic Materials, ASM, Metals Park, OH, 1965, pp. 3–25.

    Google Scholar 

  5. W. Hume-Rothery:Prog. Mater. Sci., 1968, vol. 13, pp. 229–65.

    Article  Google Scholar 

  6. M.P. Daniel, D. Dayan, and A. Languille:Phys. Rev., 1971, vol. B4, pp. 4348–54.

    Google Scholar 

  7. J. Askell and G.H. Tomlin:Phil. Mag., 1965, vol. 11, pp. 467–74.

    Article  Google Scholar 

  8. M. Fromont and G. Marbach:J. Phys. Chem. Solids, 1977, vol. 38, pp. 27–33.

    Article  CAS  Google Scholar 

  9. Y. Jijima, K. Kimura, and K. Hirano:Acta Metall., 1988, vol. 36, pp. 2811–20.

    Article  Google Scholar 

  10. Hiroshi Oikawa:Lattice Self-Diffusion in Solid Iron: A Critical Review, Technology Report of the Tohoku University, 1982, vol. 47 (1), pp. 66–77.

    Google Scholar 

  11. F.R. Winslow and T.S. Lundy:Trans. TMS-AIME, 1965, vol. 233, pp. 1790–91.

    CAS  Google Scholar 

  12. J.N. Mundy, T.E. Miller, and R.J. Porte:Phys. Rev., 1971, vol. B3, pp. 2445–47.

    Article  Google Scholar 

  13. A. Languille, D. Calais, and B. Coqblin:J. Phys. Chem. Solids, 1974, vol. 35, pp. 1461–67.

    Article  CAS  Google Scholar 

  14. A. Lodding, J.N. Mundy, and A. Orr:Phys. Status Solidi, 1970, vol. 38, pp. 559–69.

    Article  CAS  Google Scholar 

  15. J. Askill and D.H. Tomlin:Phil. Mag., 1963, vol. 8, pp. 997–1001.

    Article  CAS  Google Scholar 

  16. L.W. Barr and F.A. Smith:DIMETA 2, Proc. Int. Conf. on Diffusion in Metals and Alloys, Tihary, Hungary, F.J. Kedves and D.L. Beke, eds., Trans Tech Publications, Aedermannsdorf, Switzerland, 1982, p. 325.

    Google Scholar 

  17. T.S. Lundy, R.F. Winslow, R.E. Paivel, and C.J. McHargue:Trans. TMS-AIME, 1965, vol. 233, pp. 1533–39.

    CAS  Google Scholar 

  18. M. Daniel, G. Erez, and G.M. Schmidt:Phil. Mag., 1969, vol. 19, pp. 1045–51.

    Article  Google Scholar 

  19. Warren Z. Wade, David W. Short, John C. Waiden, and Joseph W. Magana:Metall. Trans. A, 1978, vol. 9A, pp. 965–72.

    Article  CAS  Google Scholar 

  20. D.F. Holcomb and R.E. Norberg:Phys. Rev., 1955, vol. 98, pp. 1074–91.

    Article  CAS  Google Scholar 

  21. R.L. Eager and D.B. Langmuir:Phys. Rev., 1953, vol. 89, p. 911.

    CAS  Google Scholar 

  22. Y. Adda and J. Philibert:La Diffusion Dans les Solides, Vol. II, Presses Universitaires De France, Paris, 1966, p. 1134.

    Google Scholar 

  23. J.F. Murdock, F.S. Lundy, and E.E. Stanbury:Acta Metall., 1964, vol. 12, pp. 1033–39.

    Article  Google Scholar 

  24. R. Chiron and G. Faivre:Phil. Mag. A, 1985, vol. 51, pp. 865–78.

    Article  CAS  Google Scholar 

  25. J. Pelleg:Phil. Mag., 1974, vol. 29, pp. 383–93.

    Article  CAS  Google Scholar 

  26. Stanislaw Mrowec:Defects and Diffusion in Solids—An Introduction, Materials Science Monograph 5, Elsevier Scientific Publishing Co., New York, NY, 1980, p. 395.

    Google Scholar 

  27. M. Fromont, A. Languille, and D. Calais:J. Phys. Chem. Solids, 1914, vol. 35, pp. 1367–71.

    Article  Google Scholar 

  28. J.I. Federer and T.S. Lundy:Trans. TMS-AIME, 1963, vol. 227, pp. 592–97.

    CAS  Google Scholar 

  29. A.D. Le Claire:Diffusion in Body Centered Cubic Metals, ASM, Metals Park, OH, 1965, p. 13.

    Google Scholar 

  30. S.J. Rothman, L.T. Lloyd, R. Weil, and A.L. Harkness:Trans. TMS-AIME, 1960, vol. 218, pp. 605–07.

    CAS  Google Scholar 

  31. B. Gunther and O. Kanert:Acta Metall., 1983, vol. 31, pp. 909–17.

    Article  Google Scholar 

  32. Y. Adda and J. Philbert:La Diffusion Dans les Solids, Vol. II, Presses Universitaires De France, Paris, 1966, p. 1132.

    Google Scholar 

  33. Smithell's Metals Reference Book, 6th ed., Eric A. Brandes, ed., Butterworth's, London, 1983, pp. 13–9.

    Google Scholar 

  34. W. Chomka:Diffusion Data, 1970, vol. 4, pp. 17–18.

    Google Scholar 

  35. F.H. Spedding and Korerjuki Shiba:J. Chem. Phys., 1972, vol. 57, pp. 612–17.

    Article  CAS  Google Scholar 

  36. P.G. Shewmon and F.N. Rhines:Trans. TMS-AIME, 1954, vol. 200, pp. 1021–25.

    Google Scholar 

  37. CM. Libanati and S.F. Dyment:Acta Metall., 1963, vol. 11, pp. 1263–68.

    Article  CAS  Google Scholar 

  38. G.A. Shim:Acta Metall., 1955, vol. 3, pp. 87–88.

    Article  Google Scholar 

  39. V.N. Maskalets, E.A. Smimov, D.M. Skorov, and G.B. Fedorov:Diffusion Data, 1969, vol. 3, p. 35.

    Google Scholar 

  40. N.L. Peterson and S.J. Rothman:Phys. Rev., 1967, vol. 163, pp. 645–49.

    Article  CAS  Google Scholar 

  41. Stanislaw Mrowec:Defects and Diffusion on Solids—AnIntroduction, Materials Science Monograph 5, Elsevier Scientific Publishing Co., New York, NY, 1980, p. 396.

    Google Scholar 

  42. Stanislaw Mrowec:Defeds and Diffusion on Solids—An Introduction, Materials Science Monograph 5, Elsevier Scientific Publishing Co., New York, NY, 1980, p. 395.

    Google Scholar 

  43. T.S. Lundy and J.F. Murdock:J. Appl. Phys., 1962, vol. 33, pp. 1671–73.

    Article  CAS  Google Scholar 

  44. E.H.C. Parker, H.R. Glyde, and R. Smith:Phys. Rev., 1968, vol. 176, pp. 1107–10.

    Article  CAS  Google Scholar 

  45. N.L. Peterson:J. Nucl. Mater., 1978, vol. 69–70, pp. 3–37 (calculated from Fig. 5).

    Article  Google Scholar 

  46. A. Hassner and W. Lange:Phys. Status Solidi, 1965, vol. 8, pp. 77–91.

    Article  Google Scholar 

  47. S.J. Rothman and N.L. Peterson:Phys. Status Solidi, 1969, vol. 35, pp. 305–12.

    Article  CAS  Google Scholar 

  48. M.P. Daniel, G. Erez, and G.M. Schmidt:Phil. Mag., 1969, vol. 19, pp. 1053–59.

    Article  Google Scholar 

  49. H.A. Resing and N.H. Nachtrieb:J. Phys. Chem. Solids, 1961, vol. 21, pp. 40–56.

    Article  CAS  Google Scholar 

  50. N.L. Peterson:Phys. Rev., 1964, vol. 136A, pp. 568–74.

    Article  Google Scholar 

  51. Stanislaw Mrowec:Defects and Diffusion in Solids—An Introduction, Materials Science Monograph 5, Elsevier Scientific Publishing Co., New York, NY, 1980, p. 394.

    Google Scholar 

  52. Y. Adda and J. Philibert:La Diffusion Dans les Solids, Vol. II, Presses Universitaires, De France, Paris, 1966, p. 1131.

    Google Scholar 

  53. M. Werner, H. Mehrer, and H.D. Hickheimer:Phys. Rev., 1985, vol. B-32, pp. 3930–37.

    Article  Google Scholar 

  54. M.A. Kanter:Phys. Rev., 1957, vol. 107, pp. 655–63.

    Article  CAS  Google Scholar 

  55. J.E. Dickey:Acta Metall., 1959, vol. 7, pp. 350–53.

    Article  CAS  Google Scholar 

  56. E.M. Hampton, P. McKay, and J.N. Sherwood:Phil. Mag., 1974, vol. 30, pp. 853–68.

    Article  CAS  Google Scholar 

  57. E.M. Hampton and J.N. Sherwood:Phil. Mag., 1974, vol. 29, pp. 763–69.

    Article  CAS  Google Scholar 

  58. A. Hassner and R. Hassner:Phys. Status Solidi, 1965, vol. 11, pp. 575–83.

    Article  Google Scholar 

  59. P. Bratter and H. Gobreckt:Phys. Status Solidi, 1970, vol. 37, pp. 869–78.

    Article  Google Scholar 

  60. F.J. Demond, S. Kalbitzer, H. Mannsperger, and H. Damjantschitsch:Phys. Lett. A, 1983, vol. 93A, pp. 503–06.

    Article  CAS  Google Scholar 

  61. C. Coston and N.H. Nachtrieb:J. Phys. Chem., 1964, vol. 68, pp. 2219–29.

    Article  Google Scholar 

  62. R.N. Ghoshtagore:Phys. Rev., 1967, vol. 155, pp. 598–602.

    Article  CAS  Google Scholar 

  63. Y. Adda and A. Kirianenko:J. Nucl. Mater., 1962, vol. 6, pp. 130–34.

    Article  CAS  Google Scholar 

  64. Y. Adda, A. Kirianenko, and C. Mairy:J. Nucl. Mater., 1959, vol. 3, pp. 300–01.

    Article  Google Scholar 

  65. Periodic Table of the Elements, Sargent-Welch Scientific Company, Skokie, IL, 1979.

  66. R.E. Einziger, J.N. Mundy, and H.A. Hoff:Phys. Rev., 1978, vol. 17B, pp. 440–48.

    Article  Google Scholar 

  67. J.N. Mundy, T.E. Miller, N.Q. Lam, H.A. Hoff, and L. J. Nowicki:Phys. Rev., 1978, vol. 18B, pp. 6566–75.

    Article  Google Scholar 

  68. G. Newmann and V. Tolle:Phil. Mag., 1986, vol. 54A, pp. 619–29.

    Article  Google Scholar 

  69. S.L. Robinson and O.D. Sherby:Phys. Status Solidi, 1970, vol. 1, pp. K119-K122.

    Article  CAS  Google Scholar 

  70. M. Mali, J. Roon, M. Sinderegger, D. Brinkmann, and P. Heitjans:J. Phys., F. Met. Phys., 1988, vol. 18, pp. 403–12.

    Article  CAS  Google Scholar 

  71. G.V. Kidson:Can. J. Phys., 1963, vol. 41, pp. 1563–70.

    Article  CAS  Google Scholar 

  72. W. Petry, T. Flottman, A. Heiming, J. Trampenau, and M. Alba:Phys. Rev. Lett., 1988, vol. 61, pp. 722–25.

    Article  CAS  Google Scholar 

  73. R.B. Fan:Mater. Sci. Forum, Diffusion in Solids, 1984, vol. 1, pp. 109–31.

    Article  Google Scholar 

  74. S.J. Rothman and N.L. Peterson:Diffusion in Body Centered Cubic Metals, ASM, Metals Park, OH, 1965, p. 183.

    Google Scholar 

  75. A.J. Ardell:Acta Metall., 1963, vol. 11, pp. 591–94.

    Article  CAS  Google Scholar 

  76. Ralph Hultgren, Pramod D. Desai, Donald T. Hawkins, Molly Gleiser, Kenneth K. Kelly, and Donald D. Wagman:Selected Values of the Thermodynamic Properties of the Elements, ASM, Metals Park, OH, 1973.

    Google Scholar 

  77. N.L. Peterson: inDiffusion, ASM, Metals Park, OH, 1973, pp. 47–82.

    Google Scholar 

  78. R.P. Agarwala and D.D. Pruthi:Defect and Diffusion Forum, 1989, vols. 66–69, pp. 365–70.

    Google Scholar 

  79. G. Newmann:Defect and Diffusion Forum, 1989, vols. 66–69, pp. 43–64.

    Google Scholar 

  80. W. Petry, A. Heiming, J. Trampenau, and G. Vogl:Defect and Diffusion Forum, 1989, vols. 66–69, pp. 157–74.

    Google Scholar 

  81. D.L. Beke:Defect and Diffusion Forum, 1989, vols. 66–69, pp. 127–56.

    Google Scholar 

  82. M. Lübbehusen and H. Mehrer:Acta Metall. Mater., 1990, vol. 38, pp. 283–92.

    Article  Google Scholar 

  83. K.A. Gschneidner, Jr. and B.J. Beaudry:Metals Handbook, 9th ed., ASM, 1979, vol. 2, p. 823.

    Google Scholar 

  84. Ken-ichi Hirano and Yoshiaki Iijima:Defect and Diffusion Forum, 1989, vols. 66–69, pp. 1039–58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cahoon, J.R., Sherby, O.D. The activation energy for lattice Self-Diffusion and the Engel-Brewer Theory. Metall Trans A 23, 2491–2500 (1992). https://doi.org/10.1007/BF02658053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02658053

Keywords

Navigation