Skip to main content
Log in

Intrinsic Fatigue Crack Growth Rates for Al-Li-Cu-Mg Alloys in Vacuum

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The influences of microstructure and deformation mode on inert environment intrinsic fatigue crack propagation were investigated for Al-Li-Cu-Mg alloys AA2090, AA8090, and X2095 compared to AA2024. The amount of coherent shearable δ (Al3Li) precipitates and extent of localized planar slip deformation were reduced by composition (increased Cu/Li in X2095) and heat treatment (double aging of AA8090). Intrinsic growth rates, obtained at high constantK max to minimize crack closure and in vacuum to eliminate any environmental effect, were alloy dependent;da/dN varied up to tenfold based on applied ΔK or ΔK/E. When compared based on a crack tip cyclic strain or opening displacement parameter (ΔK/(σys E)1/2), growth rates were equivalent for all alloys except X2095-T8 which exhibited unique fatigue crack growth resistance. Tortuous fatigue crack profiles and large fracture surface facets were observed for each Al-Li alloy independent of the precipitates present, particularly δ, and the localized slip deformation structure. Reduced fatigue crack propagation rates for X2095 in vacuum are not explained by either residual crack closure or slip reversibility arguments; the origin of apparent slip band facets in a homogeneous slip alloy is unclear. Better understanding of crack tip damage accumulation and fracture surface facet crystallography is required for Al-Li alloys with varying slip localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.S. Piascik and R.P. Gangloff:Metall. Trans. A, 1991, vol. 22A, pp. 2415–28.

    Article  CAS  Google Scholar 

  2. R.P. Gangloff: inEnvironment Induced Cracking of Metals, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, p. 55.

    Google Scholar 

  3. M. Gao, P.S. Pao, and R.P. Wei:Metall. Trans. A, 1988, vol. 19A, pp. 1739–50.

    Article  CAS  Google Scholar 

  4. R.D. Carter, E.W. Lee, E.A. Starke, Jr., and C.J. Beevers:Metall. Trans. A, 1984, vol. 15A, pp. 555–63.

    Article  CAS  Google Scholar 

  5. D.A. Meyn:Trans. ASM, 1968, vol. 61, p. 52.

    Google Scholar 

  6. W.A. Herman, R.W. Hertzberg, and R. Jaccard:Fatigue and Fract. Eng. Mater. Struct., 1988, vol. 11, p. 303.

    Article  Google Scholar 

  7. K.T. Venkateswara Rao and R.O. Ritchie:Int. Mater. Rev., 1992, vol. 37, p. 153.

    Article  CAS  Google Scholar 

  8. K.T. Venkateswara Rao and R.O. Ritchie:Mater. Sci. Technol., 1989, vol. 5, p. 896.

    Article  CAS  Google Scholar 

  9. K.T. Venkateswara Rao, R.J. Bucci, K.V. Jata, and R.O. Ritchie:Mater. Sci. Eng. A, 1991, vol. 141 A, p. 39.

    Google Scholar 

  10. R. Tintillier, H.S. Yang, N. Ranganathan, and J. Petit:J. Phys., 1987, p. C3-777.

  11. J. Petit, S. Suresh, A.K. Vasudevan, and R.C. Malcolm: inAluminum-Lithium Alloys III, C. Baker, P.J. Gregson, S.J. Harris, and C.J. Peel, eds., Institute of Metals, London, 1986, p. 257.

    Google Scholar 

  12. M.O. Speidel: inHigh-Temperature Materials in Gas Turbines, P.R. Sahm and M.O. Speidel, eds., Elsevier Scientific Publishing Co., Amsterdam, 1974, p. 207.

    Google Scholar 

  13. E.P. Phillips:Results of the Round Robin on Opening-Load Measurements, NASA Technical Memorandum 101601, NASA Langley Research Center, Hampton, VA, 1989.

    Google Scholar 

  14. J.E. Allison and C.P. You: inFatigue '90, H. Kitagawa and T. Tanaka, eds., MCEP, Ltd., Birmingham, United Kingdom, 1990, vol. II, p. 1249.

    Google Scholar 

  15. J.K. Donald: inMechanics of Fatigue Crack Closure, J.C. Newman, Jr. and W. Elber, eds., ASTM STP 982, ASTM, Philadelphia, PA, 1988, p. 222.

    Chapter  Google Scholar 

  16. P.J. Gregson and H.M. Flower:Acta Metall., 1985, vol. 33, p. 527.

    Article  CAS  Google Scholar 

  17. T.H. Sanders, Jr. and E.A. Starke, Jr.:Acta Metall., 1982, vol. 30, p. 927.

    Article  CAS  Google Scholar 

  18. M. Furukawa, Y. Miura, and M. Nemoto:Trans. Jpn Inst. Met., 1985, vol. 26, p. 230.

    Article  CAS  Google Scholar 

  19. J.C. Huang and A. Ardell:Acta. Metall., 1988, vol. 36, p. 2995.

    Article  CAS  Google Scholar 

  20. J.M. Howe, J. Lee, and A.K. Vasudevan:Metall. Trans. A, 1988, vol. 19A, pp. 2911–20.

    Article  CAS  Google Scholar 

  21. K.V. Jata and E.A. Starke, Jr.:Metall. Trans. A, 1986, vol. 17A, pp. 1011–26.

    Article  CAS  Google Scholar 

  22. C.P. Blankenship, Jr. and E.A. Starke, Jr.:Fatigue Fract. Eng. Mater. Struct., 1991, vol. 14, p. 103.

    Article  Google Scholar 

  23. E.A. Starke, Jr., T.H. Sanders, Jr., and I.G. Palmer:J. Met., 1981, vol. 33, p. 24.

    CAS  Google Scholar 

  24. Y.B. Xu, L. Wang, Y. Zhang, Z.G. Wang, and Q.Z. Hu:Metall. Trans. A, 1991, vol. 22A, pp. 723–29.

    Article  CAS  Google Scholar 

  25. G.R. Yoder, P.S. Pao, M.A. Imam, and L.A. Cooley:Scripta Metall., 1988, vol. 22, p. 1241.

    Article  CAS  Google Scholar 

  26. R.S. Piascik and R.P. Gangloff:Metall. Trans. A, 1993, vol. 24A, in press.

  27. R.S. Piascik: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1990.

    Google Scholar 

  28. “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” Designation E647-91,Annual Book of ASTM Standards, ASTM, Philadelphia, PA, 1992, vol. 03.01, p. 674.

  29. S.P. Lynch:Mater. Sci. Eng., 1991, vol. 136, p. 25.

    Article  Google Scholar 

  30. C.P. Blankenship, Jr. and E.A. Starke, Jr.:Metall. Trans. A, 1993, vol. 24A, pp. 833–41.

    Article  CAS  Google Scholar 

  31. P.D. Pitcher, R.J. Stewart, and S. Gupta:Scripta Metall., 1992, vol. 26, p. 511.

    Article  CAS  Google Scholar 

  32. A.K. Mukhopadhyay, C.N.J. Tite, H.M. Flower, P.J. Gregson, and F. Sale: inAluminum-Lithium Alloys IV, Editions de Physique, Cedex, France, 1987, p. C3–447.

    Google Scholar 

  33. C.P. Blankenship, Jr.: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1992.

    Google Scholar 

  34. DC. Slavik: Ph.D. Dissertation, University of Virginia, Charlottesville, VA, 1993.

    Google Scholar 

  35. G.R. Yoder, L.A. Cooley, and T.W. Crooker:Scripta. Metall., 1982, vol. 16, p. 1021.

    Article  Google Scholar 

  36. R.J.H. Wanhill and L. Schra: “Corrosion Fatigue Crack Arrest in Aluminum Alloys,” National Aerospace Laboratory Report NLR-TR-87128-U, Amsterdam, The Netherlands, 1987.

  37. G.R. Yoder, L.A. Cooley, and T.W. Crooker: inFracture Mechanics, J.C Lewis and G. Sines, eds., ASTM STP 791, ASTM, Philadelphia, PA, 1983, p. 348.

    Google Scholar 

  38. J. Petit: “Modeling of Intrinsic Fatigue Crack Propagation,” unpublished research report, Ecole Nationale Superieure de Mecanique et DAerotechnique, Poitiers Cedex, France, 1993.

    Google Scholar 

  39. R.M.N. Pelloux:Trans. ASM, 1969, vol. 62, p. 281.

    CAS  Google Scholar 

  40. S.B. Chakrabortty:Fatigue and Frac. Eng. Mater. Struc., 1979, vol. 2, p. 331.

    Article  CAS  Google Scholar 

  41. S. Majumdar and J.D. Morrow: inFracture Toughness and Slow- Stable Cracking, ASTM STP 559, ASTM, Philadelphia, PA, 1974, p. 159.

    Book  Google Scholar 

  42. J.C. Newman:Int. J. Fract. Mech., 1984, vol. 24, p. R131.

    Article  Google Scholar 

  43. J.C. Newman, Jr.: inMethods and Models for Predicting Fatigue Crack Growth Under Random Loading, J.B. Chang and C.M. Hudson, eds., ASTM STP 748, ASTM, Philadelphia, PA, 1981, p. 53.

    Chapter  Google Scholar 

  44. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie:Metall. Trans. A, 1988, vol. 19A, pp. 549–61.

    CAS  Google Scholar 

  45. K.T. Venkateswara Rao, R.S. Piascik, R.P. Gangloff, and R.O. Ritchie: inProc. 5th Intl. Al-Li Conf, T.H. Sanders, Jr., and E.A. Starke, Jr., eds., MCEP Ltd., Birmingham, UK, 1989, pp. 955–71.

    Google Scholar 

  46. A.K. Vasudevan and S. Suresh:Metall. Trans. A, 1985, vol. 16A, p. 475.

    Article  CAS  Google Scholar 

  47. G.H. Bray, A.P. Reynolds, and E.A. Starke, Jr.:Metall. Trans. A, 1992, vol. 23A, pp. 3055–66.

    Article  CAS  Google Scholar 

  48. E.A. Starke, Jr. and J.C. Williams: inFracture Mechanics: Perspectives and Directions, R.P. Wei and R.P. Gangloff, eds., ASTM STP 1020, ASTM, Philadelphia, PA, 1989, p. 184.

    Google Scholar 

  49. E. Hornbogen: inStrength of Metals and Alloys, ICSMA 6, R.C. Gifkins, ed., Pergamon Press, New York, NY, 1982, p. 1059.

    Chapter  Google Scholar 

  50. E. Hornbogen and K.H. Zum Gahr:Acta Metall., 1976, vol. 24, p. 581.

    Article  CAS  Google Scholar 

  51. G.G. Garrett and J.F. Knott:Acta Metall., 1975, vol. 23, p. 841.

    Article  CAS  Google Scholar 

  52. D.C. Slavik, J.A. Wert, and R.P. Gangloff: “Determining Fracture Facet Crystallography Using Electron Back Scatter Patterns and Quantitative Tilt Fractography,”Journal of Materials Research, in press, October 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slavik, D.C., Blankenship, C.P., Starke, E.A. et al. Intrinsic Fatigue Crack Growth Rates for Al-Li-Cu-Mg Alloys in Vacuum. Metall Trans A 24, 1807–1817 (1993). https://doi.org/10.1007/BF02657855

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657855

Keywords

Navigation