Skip to main content
Log in

Small Fatigue Crack Behavior in 7075-T651 Aluminum as Monitored with Rayleigh Wave Reflection

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Small fatigue crack growth in 7075-T651 aluminum is periodically monitored with an ultrasonic Rayleigh wave technique. The wideband reflection signals are digitized and stored in the computer memory to permit the signal processing in the frequency domain. With the help of the constructed three-dimensional (3-D) reflection coefficient, the reflection amplitude spectra yield the measurements of the crack depth, if larger than 0.062 mm, and the crack closure stress. Acoustically obtainedda/dNK eff relations describe the anomalous growth behavior of small surface crack, extending from the late small crack regime to the large crack regime passing through the minimum growth rate. The split spectrum processing proves to be useful in removing the grain noises to illuminate the target echoes, which is necessary to detect the nucleation and characterize the cracks smaller than 0.1 mm in depth. Discussions on the computer-controlled, automated,in situ monitoring system are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lankford:Fatigue Eng. Mater. Struct., 1982, vol. 5, pp. 233–48.

    Article  Google Scholar 

  2. Fatigue Mechanisms: Advances in Quantitative Measurement of Physical Damage, J. Lankford, D.L. Davidson, W.L. Morris, and R.P. Wei: eds., ASTM STP 811, ASTM, Philadelphia, PA, 1983.

    Google Scholar 

  3. S. Suresh and R.O. Richie:Int. Met. Rev., 1984, vol. 29, pp. 445–76.

    Article  Google Scholar 

  4. Small Fatigue Cracks, R.O. Richie and S. Suresh: eds., MS, Warrendale, PA, 1986.

    Google Scholar 

  5. K. Tanaka:JSME Int. J., 1987, vol. 30, pp. 1–13.

    Article  Google Scholar 

  6. W.L. Morris and M.R. James:Mater. Res. Soc. Bull., 1989, vol. 14, pp. 18–24.

    Article  Google Scholar 

  7. O. Buck: Mater. Res. Soc. Bull., 1989, vol. 14, pp. 44–50.

    Article  Google Scholar 

  8. M.T. Resch, D.V. Nelson, J.C. Shyne, and G.S. Kino: inAdvances in Crack Length Measurement, C.J. Beevers, ed., Engineering Materials Advisory Services, Wariey, United Kingdom, 1982, pp. 473–504.

    Google Scholar 

  9. M.T. Resch, D.V. Nelson, H.H. Yuce, and G.F. Ramusat:J. Nondestr. Eval., 1985, vol. 5, pp. 1–7.

    Article  Google Scholar 

  10. B. London, D.V. Nelson, and J.C. Shyne:Metall. Trans. A, 1989, vol. 20A, pp. 1257–65.

    Article  CAS  Google Scholar 

  11. G.S. Kino:J. Appl. Phys., 1978, vol. 49, pp. 3190–99.

    Article  Google Scholar 

  12. Ch. Zhang and J.D. Achenbach:J. Acoust. Soc. Am., 1990, vol. 88, pp. 1986–92.

    Article  Google Scholar 

  13. L.J. Bond:Ultrasonics, 1979, vol. 17, pp. 71–77.

    Article  Google Scholar 

  14. M. Hirao, H. Fukuoka, and Y. Miura:J. Acoust. Soc. Am., 1982, vol. 72, pp. 602–06.

    Article  Google Scholar 

  15. R.L. Jungerman, B.T. Khuri-Yakub, and G.S. Kino:Mater. Eval., 1984, vol. 42, pp. 444–50.

    Google Scholar 

  16. B.Q. Vu and V.K. Kinra:J. Acoust. Soc. Am., 1985, vol. 77, pp. 1425–30.

    Article  Google Scholar 

  17. M. Hirao, K. Tojo, and H. Fukuoka: inNondestructive Characterization of Materials V, T. Kishi, T. Saito, C. Ruud, and R. Green, Jr., eds., Gordon and Breach, London, 1992, pp. 223–32.

    Google Scholar 

  18. R.C. Kemerait and D.G. Childers:IEEE Trans. Information Theory, 1972, vol. 18, pp. 745–59.

    Article  Google Scholar 

  19. B.R. Tittmann and O. Buck:J. Nondestr. Eval., 1980, vol. 2, pp. 123–36; also inAdvances in Crack Length Measurement, C.J. Beevers, ed., Engineering Materials Advisory Services, Warley, United Kingdom, 1982, pp. 413–46.

    Article  Google Scholar 

  20. J. Lankford, D.L. Davidson, and K.S. Chan:Metall. Trans. A, 1984, vol. 15A, pp. 1579–88.

    Article  Google Scholar 

  21. Mechanics of Fatigue Crack Closure, J.C. Newman, Jr. and W. Elber, eds., ASTM STP 982, ASTM, Philadelphia, PA, 1988.

    Google Scholar 

  22. D.L. Davidson:Eng. Fract. Mech., 1991, vol. 38, pp. 393–402.

    Article  Google Scholar 

  23. J.S. Raju and J.C. Newman, Jr.:Eng. Fract. Mech., 1979, vol. 11, pp. 817–29.

    Article  Google Scholar 

  24. P.K. Liaw:Mater. Res. Soc. Bull., 1989, vol. 14, pp. 25–35.

    Article  CAS  Google Scholar 

  25. P. Karpur, P.M. Shanker, J.L. Rose, and V.L. Newhouse:Ultrasonics, 1987, vol. 25, pp. 204–08.

    Article  Google Scholar 

  26. P. Karpur, P.M. Shanker, J.L. Rose, and V.L. Newhouse:Ultrasonics, 1988, vol. 26, pp. 204–09.

    Article  Google Scholar 

  27. P.M. Shankar, P. Karpur, V.L. Newhouse, and J.L. Rose:IEEE Trans, on Ultrasonics, Ferroelectrics, and Frequency Control, 1989, vol. UFFC-20, pp. 101–08.

    Article  Google Scholar 

  28. J.-D. Aussei:Ultrasonics, 1990, vol. 28, pp. 229–40.

    Article  Google Scholar 

  29. P. Karpur and M.T. Resch: inReview of Progress in Quantitative NDE, D.O. Thompson and D.E. Chimenti, eds., Plenum Press, New York, NY, 1991, vol. 10A, pp. 757–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

K. TOJO, formerly Graduate Student,

K. TOJO, formerly Graduate Student,

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirao, M., Tojo, K. & Fukuoka, H. Small Fatigue Crack Behavior in 7075-T651 Aluminum as Monitored with Rayleigh Wave Reflection. Metall Trans A 24, 1773–1783 (1993). https://doi.org/10.1007/BF02657852

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02657852

Keywords

Navigation