Skip to main content
Log in

The structure of tempered martensite and its susceptibility to hydrogen stress cracking

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

A series of 4130 steels modified with 0.50 pct Mo and 0.75 pct Mo were tempered at temperatures between 300 and 700 °C for one hour. The changes in the carbide dispersion and matrix substructure produced by tempering were measured by transmission electron microscopy. These measurements were correlated with resistance to hydrogen stress cracking produced by cathodic charging of specimens in three-point bending. Scanning electron microscopy showed that specimens tempered between 300 and 500 °C failed by intergranular cracking while those tempered at higher temperatures failed by a transgranular fracture mode. Auger electron spectroscopy showed that the intergranular fracture was associated with hydrogen interaction with P segregation and carbide formation at prior austenite grain boundaries. Transgranular cracking was initiated at inclusion particles from which cracks propagated to produce flat fracture zones extending over several prior austenite grains. The 4130 steels modified with higher Mo content resisted tempering and showed better hydrogen stress cracking resistance than did the unmodified 4130 steel. The transition in fracture mode is attributed to a decohesion mechanism in the low temperature tempered samples and a pressure mechanism in the highly tempered samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Association of Corrosion Engineers Materials Requirement, MR-01-75.

  2. E. Snape:Corrosion, 1967, vol. 23, pp. 154–72.

    CAS  Google Scholar 

  3. E. Snape:Corrosion, 1968, vol. 24, pp. 261–82.

    CAS  Google Scholar 

  4. W. M. Cain and A. R. Troiano:Pet. Eng., 1965, vol. 37, pp. 78–82.

    CAS  Google Scholar 

  5. A. R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  6. P. J. Grobner, W. C. Hagel, and V. Biss: unpublished research, Climax Molybdenum Co., Ann Arbor, MI.

  7. P. J. Grobner, D. L. Sponseller, and W. W. Cias:Mater. Perform., 1975, vol. 14, pp. 35–43.

    CAS  Google Scholar 

  8. J. P. Fraser, G. G. Eldredge, and R. S. Treseder:Corrosion, 1958, vol. 14, pp. 517t.

    CAS  Google Scholar 

  9. A. E. Schutz and W. D. Robertson:Corrosion, 1957, vol. 13, p. 437t.

    Google Scholar 

  10. H. L. Craig, Jr., D. O. Sprowls, and D. E. Piper:Handbook on Corrosion Testing and Evaluation, W. H. Ailor, ed., pp. 231–90, John Wiley and Sons, Inc., New York, 1971.

    Google Scholar 

  11. R. T. DeHoff and F. N. Rhines:Quantitative Microscopy, pp. 50 and 181, McGraw-Hill, New York, 1968.

    Google Scholar 

  12. C. A. Apple, R. N. Caron, and G. Krauss:Met. Trans., 1974, vol. 5, pp. 593–99.

    Article  CAS  Google Scholar 

  13. R. N. Caron and G. Krauss:Met. Trans., 1972, vol. 3, pp. 2381–89.

    Article  CAS  Google Scholar 

  14. R. M. Hobbs, G. W. Larimer, and N. Ridley:J. Iron Steel Inst., 1972, vol. 210, pp. 757–65.

    CAS  Google Scholar 

  15. G. Thomas:Met. Trans. A, 1978, vol. 9A, pp. 439–50.

    Article  CAS  Google Scholar 

  16. D. L. Williamson, R. G. Schupmann, J. P. Materkowski, and G. Krauss:Met. Trans. A, 1979, vol. 10A, pp. 379–82.

    CAS  Google Scholar 

  17. D. Shah and C. Altstetter:Mater. Sci. Eng., 1976, vol. 26, pp. 175–83.

    Article  CAS  Google Scholar 

  18. S. K. Banerji, C. J. McMahon, Jr., and H. C. Feng:Met. Trans. A, 1978, vol. 9A, pp. 237–47.

    Article  CAS  Google Scholar 

  19. J. P. Materkowski and G. Krauss:Met. Trans. A, 1979, vol. 10A, pp. 1643–51.

    CAS  Google Scholar 

  20. R. G. Schupmann: M.S. Thesis, Colorado School of Mines, Golden, CO, 1978.

    Google Scholar 

  21. G. Krauss:Proc. Joint US/Japan Seminar, pp. 138–43, Rensselaer Polytechnic Institute, Troy, NY, June, 1979.

    Google Scholar 

  22. R. D. McCright:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, pp. 306–25, R. W. Staehle, J. Hochmann, R. D. McCright and J. E. Slater, eds., NACE, Houston, 1977.

    Google Scholar 

  23. R. A. Oriani:Proceedings Conf Fundamental Aspects of Stress Corrosion Cracking, pp. 32–50, R. W. Staehle, A. J. Forty and D. van Rooyen, eds., Houston, 1969.

  24. J. K. Tien:Effect of Hydrogen on Behavior of Materials, pp. 309–26, TMS-AIME, A. W. Thompson and I. M. Bernstein, eds., New York, 1976.

  25. G. M. Pressouyre and I. M. Bernstein:Met. Trans. A, 1978, vol. 9A, p. 1571.

    CAS  Google Scholar 

  26. G. M. Pressouyre:Met. Trans. A, 1979, vol. 10A, pp. 1571–73.

    CAS  Google Scholar 

  27. A. Ciszewski, T. Radomski, and M. Smialowski:Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, pp. 671–79, R. W. Staehle, J. Hochmann, R. D. McCright, and J. E. Slater, eds., NACE, Houston, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craig, B.D., Krauss, G. The structure of tempered martensite and its susceptibility to hydrogen stress cracking. Metall Trans A 11, 1799–1808 (1980). https://doi.org/10.1007/BF02655095

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655095

Keywords

Navigation