Skip to main content
Log in

Transition between internal and external nitridation of Ni-Ti alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A series of Ni-Ti alloys ranging in composition from 0.1 to 5 wt pct Ti were annealed in nitrogen gas or a nitrogen/argon gas mixture between 800 °C and 1020 °C. The evolution of surface and subscale structures, along with the diffusion profile of Ti in Ni, were investigated using scanning electron microscopy and energy dispersive X-ray analysis (EDX), respectively. A strong extrusion of Ni to accommodate the excess volume of internal TiN precipitation was observed between 0.5 and 1.0 wt pct Ti at 1020 °C, where a continuous superficial layer of stoichiometric TiN begins to form. A finite difference computational algorithm was developed based upon a ternary model of simultaneous diffusion and precipitation, which generates the concentration profile of Ti in Ni and the particle distribution of TiN and subsumes a transition from internal to external nitridation. Because there is a dearth of independent thermodynamic and kinetic data on this system, we were forced to use parameters established by a selected minimal set of our own experiments to predict outcomes for the main body of experimental work, thereby obtaining satisfactory closure between theory and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Kirkaldy and L.C. Brown:Can. Met. Q., 1963, vol. 2, pp. 89–117.

    CAS  Google Scholar 

  2. A.D. Dalvi and D.E. Coates:Oxid. Met., 1972, vol. 5, pp. 113–35.

    Article  CAS  Google Scholar 

  3. S. Binder, W. Lengauer, and P. Ettmayer:J. Alloys Compounds, 1991, vol. 177, pp. 119–27.

    Article  CAS  Google Scholar 

  4. J.S. Kirkaldy:Rep. Prog. Phys., 1992, vol. 55, pp. 723–95.

    Article  Google Scholar 

  5. J.S. Kirkaldy:Can. Met. Q., 1969, vol. 8, pp. 35–38.

    CAS  Google Scholar 

  6. J.S. Kirkaldy:Oxidation of Metals and Alloys, ASM, Metals Park, OH, 1970, pp. 101–14.

    Google Scholar 

  7. CE. Birchenall:Oxidation of Metals and Alloys, ASM, Metals Park, OH, 1970, pp. 177–200.

    Google Scholar 

  8. C. Wagner:Corros. Sci., 1965, vol. 5, pp. 751–64.

    Article  CAS  Google Scholar 

  9. R.A. Rapp:Acta Metall., 1961, vol. 9, pp. 730–41.

    Article  CAS  Google Scholar 

  10. S. Guruswamy, S.M. Park, J.P. Hirth, and R.A. Rapp:Oxid. Met., 1986, vol. 26, pp. 77–100.

    Article  CAS  Google Scholar 

  11. H.C. Yi, S.W. Guan, W.W. Smeltzer, and A. Petric:Acta Metall. Mater., 1994, vol. 42, pp. 981–90.

    Article  CAS  Google Scholar 

  12. J.R. Mackert, Jr., R.D. Ringle, and C.W. Fairhurst:J. Dent. Res., 1983, vol. 62, pp. 1229–35.

    CAS  Google Scholar 

  13. S.W. Guan, H.C. Yi, and W.W. Smeltzer:Oxid. Met., 1994, vol. 41, 377–87.

    Article  CAS  Google Scholar 

  14. G.R. LaFlamme and J.E. Morral:Acta Metall., 1978, vol. 26, pp. 1791–94.

    Article  CAS  Google Scholar 

  15. E.K. Ohriner and J.E. Morral:Scripta Metall., 1979, vol. 13, pp. 7–10.

    Article  CAS  Google Scholar 

  16. C. Wagner:Z. Elektrochem., 1959, vol. 63, pp. 772–90.

    CAS  Google Scholar 

  17. R.A. Rapp:Corrosion, 1965, vol. 21, pp. 382–401.

    CAS  Google Scholar 

  18. J.H. Swisher:Oxidation of Metals and Alloys, ASM, Metals Park, OH, 1970, pp. 235–67.

    Google Scholar 

  19. J.L. Meijering: inAdvances in Materials Research Vol. 5, H. Herman, ed., Wiley-Interscience, New York, NY, 1971 pp. 1–81.

    Google Scholar 

  20. C. Wagner:J. Electrochem. Soc., 1952, vol. 99, pp. 369–80.

    CAS  Google Scholar 

  21. K.M. Vedula, A.W. Funkenbusch, and R.W. Heckel: inHigh Temperature Corrosion NACE-6, R.A. Rapp, ed., NACE, Houston, TX, 1981, pp. 192–97.

    Google Scholar 

  22. K.M. Vedula, A.W. Funkenbusch, and R.W. Heckel:Oxid. Met., 1981, vol. 16, pp. 385–91.

    Article  CAS  Google Scholar 

  23. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery:Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992, pp. 838–40.

    Google Scholar 

  24. H. Zou and J.S. Kirkaldy:Fundamentals and Applications of Ternary Diffusion, Pergamon Press, Oxford, United Kingdom, 1990, pp. 184- 95.

    Google Scholar 

  25. B. Buchmayr and J.S. Kirkaldy:Fundamentals and Applications of Ternary Diffusion, Pergamon Press, Oxford, United Kingdom, 1990, pp. 162–72.

    Google Scholar 

  26. K. Bongartz, D.F. Lupton, and H. Schuster:Metall. Trans. A, 1980, vol. 11A, pp. 1883–93.

    CAS  Google Scholar 

  27. K. Bongartz, R. Schulten, W.J. Quadakkers, and H. Nickel:Corrosion, 1986, vol. 42, pp. 390–97.

    CAS  Google Scholar 

  28. H.G. Sockel and H.J. Christ:Mater. Sci. Eng., 1987, vol. 87, pp. 119–24.

    Article  CAS  Google Scholar 

  29. H.J. Christ, H. Biermann, F.C. Rizzo, and H.G. Sockel:Oxid. Met., 1989, vol. 32, pp. 111–23.

    Article  CAS  Google Scholar 

  30. J.H. Swisher:Trans. TMS-AIME, 1968, vol. 242, pp. 2433–39.

    CAS  Google Scholar 

  31. S.H. Moll and R.E. Ogilvie:Trans. TMS-AIME, 1959, vol. 215, pp. 613–18.

    Google Scholar 

  32. CRC Handbook of Chemistry and Physics, 66th ed., R.C. Weast, ed., CRC Press Inc., Boca Raton, FL, 1985–86, p. F-47.

    Google Scholar 

  33. H. Wada and R.D. Pehlke:Metall. Trans. B, 1985, vol. 16B, pp. 815–22.

    CAS  Google Scholar 

  34. D.H. Kirkwood, O.E. Atasoy, and S.R. Keown:Met. Sci., 1974, vol. 8, pp. 49–55.

    Article  CAS  Google Scholar 

  35. H.A. Wriedt and J.L. Murray:Bull. Alloy Phase Diagrams, 1987, vol. 8, pp. 378–88.

    CAS  Google Scholar 

  36. R.P. Rubly and D.L. Douglass:Oxid. Met., 1991, vol. 35, pp. 259–78.

    Article  CAS  Google Scholar 

  37. H.A. Wriedt:Bull. Alloy Phase Diagrams, 1985, vol. 6, pp. 558–63.

    CAS  Google Scholar 

  38. V.N. L'nyanoi:Fiz. Khim. Obrabot. Mater., 1977, vol. 3, pp. 104–09.

    Google Scholar 

  39. S.K. Bose and H.J. Grabke:Z. Metallkd., 1978, vol. 69, pp. 8–15.

    CAS  Google Scholar 

  40. D.L. Douglass:J. Met., 1991, Nov., pp. 74–79.

    Google Scholar 

  41. C. Wells, W. Batz, and R.F. Mehl:Trans. AIME, 1950, vol. 188, pp. 553–60.

    CAS  Google Scholar 

  42. P. Grieveson and E.T. Turkdogan:Trans. AIME, 1964, vol. 230, pp. 407–14.

    CAS  Google Scholar 

  43. CRC Handbook of Chemistry and Physics, 66th ed., R.C. Weast, ed., CRC Press Inc., Boca Raton, FL, 1985–86, p. F-48.

    Google Scholar 

  44. G. Chattopadhyay and H. Kleykamp:Z. Metallkd., 1983, vol. 74, pp. 182–87.

    CAS  Google Scholar 

  45. H. Ohtani and M. Hillert:CALPHAD, 1990, vol. 14, pp. 289–306.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article is based on a presentation made during TMS/ASM Materials Week in the symposium entitled “Atomistic Mechanisms of Nucleation and Growth in Solids,” organized in honor of H.I. Aaronson’s 70th Anniversary and given October 3–5, 1994, in Rosemont, Illinois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savva, G.C., Weatherly, G.C. & Kirkaldy, J.S. Transition between internal and external nitridation of Ni-Ti alloys. Metall Mater Trans A 27, 1611–1622 (1996). https://doi.org/10.1007/BF02649819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02649819

Keywords

Navigation