Skip to main content
Log in

Production of spherical apatite powders—the first step for optimized thermal-sprayed apatite coatings

  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Regardless of the thermal spraying system, a coating can only be as good as the quality of the input powders. Powder quality in turn is dependent on the manufacturing process and conditions. Thus, it is possible to alter characteristics such as morphology, porosity, phase composition, and the mechanical strength of the individual particles. This article looks at powder agglomerations using the spray drying technique. Two different spray drying configurations were used to produce spherical apatite powders. Apatite powders could be produced with variable densities. Rotary-atomized powders possessed internal porosity as well as open porosity. More applicable for thermal spraying are the nozzle-atomized powders, which are more dense. The particle size range produced is dependent on the many parameters in the spray drying process. Hydroxyapatite is more sensitive than fluorapatite to alterations in process conditions. The powders produced were clean, free of other phases, and possessed good flowability for thermal spraying purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Lugscheider, “Plasma Spraying for Wear Applications,”Proc. NTSC, Orlando, 105-122, Sept (1987).

  2. E. Lugscheider and T. Weber, “Coating Technology—Objectives, Potentiality and Contribution of Analytical Techniques in the Case of Plasma Spraying,”Fres. Z. Anal. Chem., 333, 293–298 (1989).

    Article  CAS  Google Scholar 

  3. J.G.C. Wolke, C.P.A.T. Klein, and K. de Groot, “Plasma Sprayed Hydroxyapatite Coatings for Biomedical Applications,”Proc. NTSC, Long Beach, 413–417, May (1990).

  4. K.A. Gross and C.C. Berndt, “Optimization of Spraying Parameters for Hydroxyapatite,”Proc. 2nd Plasma Technik Symposium, Lucerne, Switzerland, 159–170, June (1991).

  5. E. Lugscheider and M. Knepper, “Engineering Aspects of the Coating Production for Biomedical Applications,”9th European Conference on Biomaterials, Chester, UK, Sept 9-11 (1990).

  6. L. Berzina, R. Cimdins, S. Lagzdina, and V. Sadovnikovs, “Influence of Hydroxyapatite on Structure and Properties of Glass-Ce ramic Materials,”Proc. Latvian Academy of Sciences, 5, 575–580 (1990).

    Google Scholar 

  7. M. Jarcho,Clin. Orthop. Relat.Res., 157, 259–278 (1981).

    CAS  Google Scholar 

  8. E. Lugscheider, T.F. Weber, and M. Knepper, “Verarbeitbarkeit von Fluorapatit durch die atmosphärische Plasmapritztechnik,”Metall-Oberfläche, 45(3), 129–132 (1991).

    CAS  Google Scholar 

  9. A.S. Posner, N.C. Blumenthal, and F. Betts, “Chemistry and Structure of Precipitated Hydroxyapatites, inPhosphate Materials, J.O. Nriagu and P.B. Moorte, Ed., Springer Verlag, Berlin, 332 (1984).

    Google Scholar 

  10. G. Wilson and R. Heathcote,Ceram. Bull, 69(7), 1137–1139 (1990).

    CAS  Google Scholar 

  11. M.R. Dorfman and J.D. Reardon, inProc. ITSC, Montreal, Canada, 241-249, Sept (1986).

  12. R.L. Nelson, J.L. Woodhead, K.T. Scott, L.L. Wassell, and A.G. Cross, inProc. 7thITSC, London, UK, 96-101, Sept (1973).

  13. E.D. Franz, “Fluorapatit—Ein Modell zur Synthese der Zahnsubstanz im System,”Z. Natur. Forschung., 38B, 1037–1040 (1983).

    CAS  Google Scholar 

  14. D.H. Harris, “Overview of Problems Surrounding the Plasma Spraying of Hydroxyapatite Coatings,”NTSC, Orlando, Long Beach, 419-423, May (1990).

  15. H. Dislich, “Sol-Gel 1984-2004,”J. Noncrys. Solids,73, 599-612 (19??).

    Google Scholar 

  16. K.A. Gross, Masters thesis, Monash University, Clayton, Victoria, Australia (1990).

    Google Scholar 

  17. K. Masters,Spray Drying Handbook, The Pitman Press, Barth, 1 (1985).

    Google Scholar 

  18. E. Lugscheider and I. Rass, “Optimierung von Zirkoniumoxid-Plasmaspritzpulvern für Wärmedämmschichten in Verbrennungsmaschinen und Gasturbinen,”Proc. Thermische Spritzkonferenz, Essen, Germany, 226-228 (1990).

  19. ”Standard Test Method for Flow Rate of Metal Powder,” ASTM B213-83,45-46, ASTM, Philadelphia (1983).

  20. A.N. Krasnov,Sov. Powder Metall. Met. Ceram., 70(1) (1971).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lugscheider, E., Knepper, M. & Gross, K.A. Production of spherical apatite powders—the first step for optimized thermal-sprayed apatite coatings. JTST 1, 215–221 (1992). https://doi.org/10.1007/BF02646776

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02646776

Key words

Navigation