Skip to main content
Log in

Fatigue damage accumulation in nickel modified by ion beam surface microalloying

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The formation, distribution, and surface morphology of persistent slip band (PSB) structures have been studied in polycrystalline nickel with ion beam microalloyed Ni-Al surface layers. Both supersaturated solid solutions of Al in Ni andγ-γ′ dual-phase structures were formed on surfaces of low cycle fatigue specimens by ion beam mixing vapor-deposited Ni and Al layers, using 1 × 1016 ions/cm2 of Kr+ at 0.5 MeV. When cycled to saturation at constant plastic strain ranges between 6 × 10-5 and 7 × 10-3, ion beam modified specimens showed a retardation in the appearance of PSB's at the surface, and a reduction in their numbers and intensities at cyclic saturation. Slip bands that eventually emerged at ion beam modified surfaces displayed morphological features which differed sharply from the PSB notch-peak topographies usually found in fatigued fcc metals. Further, it was found that subsurface strain localization occurred in the presence of the modified surface layer, generating PSB's in the bulk which extended to the underside of the layer, but did not penetrate it. This behavior may be understood in terms of the resistance of the surface layer to plastic deformation, and the localized stresses produced in the surface film as a result of subsurface strain localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Laird:Mat. Sci. Eng., 1976, vol. 22, pp. 231–36.

    Article  CAS  Google Scholar 

  2. P. Neumann and A. Tonnessen: inFatigue 87, R. O. Ritchie and E. A. Starke, eds., Proc. 3rd Intl. Conf. on Fatigue and Fatigue Thresholds, Charlottesville, VA, June 1987.

  3. A. Kujore, S. B. Chakrabortty, and E. A. Starke: inIon Implantation Metallurgy, Proc. Symp. Mat'ls. Res. Soc, Cambridge, MA, 1979, Preece and Hirvonen, eds., AIME, 1980, pp. 132–41.

    Google Scholar 

  4. A. Kujore, S. Chakrabortty, E. Starke, and K. Legg:Nuc. Inst. Meth., 1981, vol. 182/183, p. 949.

    Article  Google Scholar 

  5. W. Hu, C. R. Clayton, and H. Herman:Scripta Metall., 1978, vol. 12, p. 679.

    Article  Google Scholar 

  6. R. Vardiman and R. Kant:J. Appl. Phys., 1982, vol. 53, p. 690.

    Article  CAS  Google Scholar 

  7. K. Hohmuth, E. Richter, and B. Rauschenbach:Mat. Sci. Eng., 1985, vol. 69, pp. 191–201.

    Article  CAS  Google Scholar 

  8. P. Heydari, E. A. Starke, S. B. Chakrabortty, and K. O. Legg: inIon Implantation into Metals, Proc. 3rd Int'l. Conf. on Mod. of Surf. Props, of Metals by Ion Impl., Manchester, U.K., 1981, Ashworth, Grant, and Proctor, eds., Pergamon, 1982, pp. 172–79.

    Chapter  Google Scholar 

  9. H. Bakhru, W. Gibson, C. Burr, A. Kumnick, and G. Welsch:Nuc. Inst. Meth., 1981, vol. 182/183, p. 959.

    Article  Google Scholar 

  10. A. W. Sleeswick, H. J. G. Kok, and G. Boom:Scripta Metall., 1980, vol. 14, pp. 919–22.

    Article  Google Scholar 

  11. R. G. Vardiman and J. E. Cox:Acta Metall., 1985, vol. 33, p. 2033.

    Article  CAS  Google Scholar 

  12. K. Y. Chen and E. A. Starke, Jr.:Mat. Sci. Eng., 1976, vol. 24, pp. 209–21.

    Article  CAS  Google Scholar 

  13. I. G. Greenfield and A. Purohit: inSurface Effects in Crystal Plasticity, Adv. Study Inst. on Surface Effects in Crystal Plasticity, Hohegeiss, Germany, R. M. Latanision and J. T. Fourie, eds., 1977, pp. 609-24.

  14. J. Eridon, L. Rehn, and G. Was:Nuc. Inst. Meth., 1987, vol. B19/20, pp. 626–31.

    Article  Google Scholar 

  15. D. S. Grummon: Doctoral Dissertation, The University of Michigan, 1986.

  16. D. S. Grummon, J. W. Jones, J. M. Eridon, G. S. Was, and L. Rehn:Nuc. Inst. Meth., 1987, vol. B19/20, pp. 227–31.

    Article  Google Scholar 

  17. D. S. Grummon and J. W. Jones:Scripta Metall., 1986, vol. 20, pp. 311–16.

    Article  CAS  Google Scholar 

  18. Z. S. Basinski and S. J. Basinski:Acta Metall., 1985, vol. 33, p. 1319.

    Article  Google Scholar 

  19. C. Laird, J. M. Finney, and D. Kuhlmann-Wilsdorf:Mat. Sci. Eng., 1981, vol. 50, pp. 127–36.

    Article  CAS  Google Scholar 

  20. E. Fisher:Scripta Metall., 1986, vol. 20, pp. 279–84.

    Article  CAS  Google Scholar 

  21. Y. Mishima, S. Ochiai, and T. Suzuki:Acta Metall., 1985, vol. 33, p. 1161.

    Article  CAS  Google Scholar 

  22. S. Ortner, C. Laird, and G. C. Farrington:Acta Metall., 1987, vol. 35, pp. 453–62.

    Article  CAS  Google Scholar 

  23. J. Lee and C. Laird:Phil. Mag., 1983, vol. 47, p. 579.

    CAS  Google Scholar 

  24. E. A. Starke, Jr.: inFatigue and Microstrudure, Materials Science Seminar, St. Louis, MO, 1979, ASM.

    Google Scholar 

  25. I. G. Greenfield and A. Purohit:Mat. Sci. Eng., 1980, vol. 46, p. 89.

    Article  CAS  Google Scholar 

  26. L. M. Brown: inDislocation Modeling of Physical Systems, Proc. Int'l. Conf., Gainesville, FL, 1980, pp. 51-73.

  27. A. Hunsche and P. Neumann:Acta Metall., 1986, vol. 34, pp. 207–17.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly with The University of Michigan at Ann Arbor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grummon, D.S., Jones, J.W. & Was, G.S. Fatigue damage accumulation in nickel modified by ion beam surface microalloying. Metall Trans A 19, 2775–2788 (1988). https://doi.org/10.1007/BF02645812

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02645812

Keywords

Navigation