Skip to main content
Log in

Hexagonal dislocation networks in titanium

  • Published:
Metallurgical transactions Aims and scope Submit manuscript

Abstract

Hexagonal dislocation networks which occurred in as-annealed commercial Ti-A 50 rod and following partial extrusion under hydrostatic pressure at room temperature were studied using transmission electron microscopy. For the as-annealed condition networks were observed on the prism, basal and {2•1•1x} planes, while for the extrusion networks were only observed on the basal plane. The various stages in the development of the networks are presented and mechanisms by which they form are proposed. The self energies of the dislocation hexagons constituting the various networks are calculated using the equations proposed by de Wit and Ruff. They increase in the order: a) networks on the basal plane in the as-annealed condition, b) networks on the prism plane in the asannealed condition and c) networks on the basal plane in the partially extruded condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. M. Miekk-oja:Phil. Mag., 1966, vol. 13, p. 367.

    Article  Google Scholar 

  2. V. K. Lindroos and H. M. Miekk-oja:Phil. Mag., 1967, vol. 16, p. 593.

    Article  CAS  Google Scholar 

  3. V. K. Lindroos and H. M. Miekk-oja:Phil. Mag., 1968,. vol. 17,p. 119.

    Article  CAS  Google Scholar 

  4. V. K. lindroos and H. M. Miekk-oja:Phil. Mag., 1969, vol. 20, p. 329.

    Article  CAS  Google Scholar 

  5. V. K. Lindroos:Phil. Mag., 1971, vol. 24, p. 709.

    Article  CAS  Google Scholar 

  6. S. Amelinckx:The Direct Observation of Dislocations, p. 312, Academia Press, New York, 1964; supplement 6 to Solid State Physics.

    Google Scholar 

  7. S. P. Agrawal, G. A. Sargent, and H. Conrad:Mater. Sci. Engr., 1974, vol. 14, p. 149.

    Article  CAS  Google Scholar 

  8. G. A. Sargent, S. Agrawal, R. J. De Angelis, and H. Conrad:Titanium Science and Technology, vol. 3, I. Jaffee and H. M. Burte, eds., p. 1745, Plenum Publ. Corp., New York, 1972.

    Google Scholar 

  9. G. F. Pittinato and S. F. Frederick:Trans. TMS-AIME, 1969, vol. 245, p. 2299.

    CAS  Google Scholar 

  10. H. Conrad:Acta Met., 1966, vol. 14, p. 1631.

    Article  CAS  Google Scholar 

  11. L. Rice, C. P. Hinesley, and H. Conrad:Metallography, 1971, vol. 4, p. 257.

    Article  CAS  Google Scholar 

  12. R. de Wit and A. W. Ruff:Phil. Mag., 1967, vol. 15, p. 1065.

    Article  Google Scholar 

  13. T. Tanaka and H. Conrad:Acta Met., 1972, vol. 20, p. 1019.

    Article  CAS  Google Scholar 

  14. K. Okazaki and H. Conrad:Acta Met., 1973, vol. 21, p. 1117.

    Article  CAS  Google Scholar 

  15. S. P. Agrawal, G. A. Sargent, and H. Conrad:Met. Trans., 1973, vol. 4, p. 2613.

    Article  CAS  Google Scholar 

  16. J. P. Hirth and J. Lothe:Theory of Dislocations, p. 145, McGraw-Hill Book Co., New York, 1968.

    Google Scholar 

  17. S. Amelinckx and H. Dekeyser:Solid State Phys., 1959, vol. 8, p. 415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is based on Doctoral Thesis presented in October 1973 by S. P. AGRAWAL to the Department of Metallurgical Engineering and Materials Science at the University of Kentucky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrawal, S.P., Sargent, G.A. & Conrad, H. Hexagonal dislocation networks in titanium. Metall Trans 5, 2415–2422 (1974). https://doi.org/10.1007/BF02644025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644025

Keywords

Navigation