Skip to main content
Log in

The effect of hydrogen source on crack initiation in 4340 steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

The crack initiation site and the corresponding incubation time were determined as a function of notch radius in 4340 steel for both internally and externally supplied hydrogen. The source of hydrogen was found to affect both the crack nucleation site and the incubation time. Hydrogen cracking in cathodically charged 4340 steel initiated near the elastic-plastic boundary with incubation times which exhibited a linear dependence on notch radius. Hydrogen cracking in an aqueous solution initiated near the notch surface with incubation times which were relatively independent of notch radius. Short time diffusional flow models which include a stress dependent critical hydrogen concentration were found to predict incubation times reasonably for internally supplied hydrogen. Cherepanov's solution for the diffusion at the tip of a semi-infinite linear slit when applied in the context of a finite notch root radii problem was found to predict incubation times adequately for externally supplied hydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Fromberg, W. J. Barnett, and A. R. Troiano:Trans. ASM, 1955, vol. 47, p. 892.

    Google Scholar 

  2. H.H. Johnson, J.G. Morlet, and A. R. Troiano:Trans. TMS-A1ME, 1958, vol. 212, p. 528.

    CAS  Google Scholar 

  3. E. A. Steigerwald, R.W. Schaller, and A. R. Troiano:Trans. TMS-AIME, 1960, vol. 218, p. 832.

    CAS  Google Scholar 

  4. A.R. Troiano:Trans. ASM, 1960, vol. 52, p. 54.

    Google Scholar 

  5. W.W. Gerberich:Hydrogen in Metals, ASM, Metals Park, OH, 1974, pp. 115–47.

    Google Scholar 

  6. W.W. Gerberich and Y.T. Chen:Metall. Trans. A, 1975, vol. 6A, p. 271.

    CAS  Google Scholar 

  7. W. W. Gerberich, Y. T. Chen, and C. St. John:Metall. Trans. A, 1975, vol. 6A, p. 1485.

    CAS  Google Scholar 

  8. C. St. John and W. W. Gerberich:Metall. Trans., 1973, vol. 4, p. 589.

    Article  Google Scholar 

  9. C.F. Barth and E.A. Steigerwald:Metall. Trans., 1970, vol. 1, p. 3451.

    CAS  Google Scholar 

  10. H.P. VanLeeuwen:Corrosion, 1973, vol. 29, p. 197.

    CAS  Google Scholar 

  11. H.P. VanLeeuwen:Corrosion, 1975, vol. 31, p. 42.

    CAS  Google Scholar 

  12. H.P. VanLeeuwen:Corrosion, 1975, vol. 31, p. 154.

    CAS  Google Scholar 

  13. H.P. VanLeeuwen:Eng. Fract. Mech., 1974, vol. 6, p. 141.

    Article  CAS  Google Scholar 

  14. A.J. Wang:Quart. Appl. Math., 1954, vol. 11, p. 427.

    Google Scholar 

  15. P. C. Paris and G. C. Sih:Fracture Toughness Testing and Its Applications, ASTM STP,ASTM, Philadelphia,PA, 1965, vol. 381, pp. 30–81.

    Google Scholar 

  16. M. Creager and P. C. Paris:Int. J. Fract. Mech., 1967, vol. 3, p. 247.

    CAS  Google Scholar 

  17. W. W. Gerberich, J. Garry, and J.F. Lessar:Effect of Hydrogen on Behavior of Materials, TMS-AIME, New York, NY, 1976, pp. 70–82.

    Google Scholar 

  18. A. R. Jack and A. T. Price:Int. J. Fract. Mech., 1970, vol. 6, p. 401.

    Google Scholar 

  19. J.M. Barsom and R. C. McNicol:Fracture Toughness and Slow-Stable Cracking, ASTM STP, ASTM, Philadelphia, PA, 1974, vol. 559, pp. 183–204.

    Google Scholar 

  20. W. G. Clark, Jr.,Fracture Toughness and Slow-Stable Cracking, ASTM STP, ASTM, Philadelphia, PA, 1974, vol. 559, pp. 205–24.

    Google Scholar 

  21. R.A. Oriani:Bunsen-Gesellshaft Phys.Chem., 1972, vol. 76, p. 848.

    CAS  Google Scholar 

  22. C.J. McMahon, Jr., C.L. Briant, and S.K. Banerji:Fracture 1977, Pergamon Press, New York, NY, 1977, p. 363.

    Google Scholar 

  23. M. Iino:Eng. Fract. Mech., 1978, vol. 10, p. 1.

    Article  CAS  Google Scholar 

  24. W. W. Gerberich, K. Jatavallabuhla, K. A. Peterson, and C. L. Jensen: “Hydrogen-induced fracture phenomena in a bcc titanium alloy,” Fifth International Conference on Fracture, Cannes, France, 1981.

  25. G. P. Cherepanov:Mechanics of Brittle Fracture, McGraw-Hill, Inc. (translated by R. De wit and W. Cooley from Nanka Press, Moscow, 1977), New York, NY, 1979, p. 410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, R.A., Gerberich, W.W. The effect of hydrogen source on crack initiation in 4340 steel. Metall Trans A 13, 305–311 (1982). https://doi.org/10.1007/BF02643321

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02643321

Keywords

Navigation