Skip to main content
Log in

On the mechanism of intergranular embrittlement by phosphorus in transformer steel

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Transformer steel (Fe-6 at. pct Si) was doped with varying amounts of phosphorus and given an embrittling step-cool heat treatment. Auger electron spectroscopy was used to determine that large increases in intergranular phosphorus concentration occurred in approximate proportion to the bulk phosphorus level through an equilibrium segregation mechanism. Bicrystals of this material were fractured at 300, 77 and 4.2 K. Grain boundary fracture energy, γgb was determined as a function of intergranular phosphorus concentration at 4.2 K. An analysis of γgband fracture mode, as a function of temperature, was used to evaluate the relative merits of intergranular fracture models based on reduced interatomic separation energy (Gibbs-Griffith model) and reduced interatomic cohesive strength (Seah model). It was found that the reduced interatomic separation energy model best fits the experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. A. Harris:J. Appl. Phys., 1968, vol. 39, p. 1419.

    Article  CAS  Google Scholar 

  2. P. W. Palmburg and H. L. Marcus:Trans. ASM, 1969, vol. 62, p. 1016.

    Google Scholar 

  3. D. F. Stein, A. Joshi, and R. P. Laforce:Trans. ASM, 1969, vol. 62, p. 776.

    CAS  Google Scholar 

  4. E. E. Hondros and M. P. Seah:Metall. Trans. A, 1977, vol. 8A, p. 1363.

    CAS  Google Scholar 

  5. M. Guttmann:Metall. Trans. A, 1977, vol. 8A, p. 1383.

    CAS  Google Scholar 

  6. J. R. Low, Jr.:Fracture of Engineering Materials, ASM, 1964, pp. 127-42.

  7. C. J. McMahon, Jr.:Temper Embrittlement in Steel, ASTM STP no. 407, 1968, pp. 127-67.

  8. R. Narayan and M. C. Murphy:J. Iron Steel Inst., 1973, vol. 211, pp. 493–501.

    CAS  Google Scholar 

  9. A. Joshi and D. F. Stein:Metall. Trans., 1970, vol. 1, p. 2543.

    CAS  Google Scholar 

  10. A. Joshi and D. F. Stein:J. Inst. Met., 1971, vol. 99, p. 178.

    CAS  Google Scholar 

  11. J. H. Westbrook and D. L. WoodNature, 1961, vol. 192, p. 1280.

    Article  CAS  Google Scholar 

  12. J. H. Westbrook and D. L. Wood:J. Inst. Met., 1963, vol. 91, p. 174.

    CAS  Google Scholar 

  13. P. V. Ramasubramanian and D. F. Stein:Metall. Trans., 1973, vol. 4, p. 1735.

    CAS  Google Scholar 

  14. A. Joshi and D. F. Stein:J. Inst. Met., 1971, vol. 99, p. 178.

    CAS  Google Scholar 

  15. J. R. Low, Jr.:Trans. ASM-AIME, 1969, vol. 245, p. 2481.

    CAS  Google Scholar 

  16. E. D. Hondros and D. McLean:Philos. Mag., 1974, vol. 29, p. 771.

    CAS  Google Scholar 

  17. D. D. Mason: Master’s Thesis, 1977, Brown University, Providence, RI.

    Google Scholar 

  18. M. P. Seah:Proc. R. Soc, 1976, vol. 349A, p. 535.

    Google Scholar 

  19. M. P. Seah:Surf. Sci., 1975, vol. 53, p. 168.

    Article  CAS  Google Scholar 

  20. C. J. McMahon, Jr., V. Vitek, and G. R. Beiton:Scri. Metall., 1978, vol. 12, p. 785.

    Article  CAS  Google Scholar 

  21. J. R. Rice:Effect of Hydrogen on Behavior of Metals, TMS-AIME, 1976, p. 455.

  22. W. A. Spitzig:Malier. Sci. Eng., 1974, vol. 16, p. 169.

    Article  CAS  Google Scholar 

  23. R. G. Davies:Metall. Trans. A, 1979, vol. 10A, p. 113.

    CAS  Google Scholar 

  24. M. C. Itnan and Tipler:Acta Metall., 1958, vol. 6, pp. 73–84.

    Article  Google Scholar 

  25. C. J. McMahon, Jr., A. K. Cianelli, and H. C. Feng:Metall. Trans. A, 1977, vol 8A, p. 1055.

    CAS  Google Scholar 

  26. R. Viswanathan:Metall. Trans., 1971, vol. 2, pp. 809–15.

    CAS  Google Scholar 

  27. R. Viswanathan and T. P. Sherlock:Metall. Trans., 1972, vol. 3, p. 459.

    CAS  Google Scholar 

  28. R. A. Mulford, C. J. McMahon, Jr., D. P. Pope, and H. C. Feng:Metall. Trans. A, 1976, vol. 7A, p. 1183.

    CAS  Google Scholar 

  29. B. C. Edwards, H. E. Bishop, J. C. Riviere, and B. L. Eyre:Acta Metall., 1976, vol. 24, p. 957.

    Article  CAS  Google Scholar 

  30. A. A. Griffith:Philos. Trans. R. Soc, 1920, vol. A221, p. 163.

    Google Scholar 

  31. D. Hull:Philos. Mag., 1965, vol. 12, p. 1021.

    CAS  Google Scholar 

  32. A. H. Maitland and G. A. Chadwick:Philos. Mag., 1969, vol. 19, p. 645.

    CAS  Google Scholar 

  33. A. H. Maitland:Ibid, p. 1305.

    CAS  Google Scholar 

  34. J. J. Gilman:J. Appl. Phys., 1960, vol. 31, p. 2208.

    Article  CAS  Google Scholar 

  35. A. R. C. Westbrook and D. L. Goldheim:J. Appl. Phys., 1963, vol. 34, p. 3335.

    Article  Google Scholar 

  36. P. Kraate:J. Appl. Phys., 1974, vol. 45, p. 4741.

    Article  Google Scholar 

  37. J. A. Kargol and D. L. Albright:Metall. Trans. A, 1977, vol. 8A p. 27.

    CAS  Google Scholar 

  38. R.Pilkington and D. Hull:Mater Sci. J., 1971, vol 5, p. 214.

    CAS  Google Scholar 

  39. A. S. Tetelman:Acta Metall, 1964, vol. 12, p. 993.

    Article  CAS  Google Scholar 

  40. L. E. Davis, N. C. McDonald, P. W. Palmburg, G. E. Riach, and R. E. Weber:Handbook of Auger Electron Spectroscopy, p. 16, Physical Electronics Industries, Inc., Eden Prairie, MN, 1976.

    Google Scholar 

  41. E. D. Hondros:Proc. R. Soc. A, 1965, vol. 286, p. 479.

    CAS  Google Scholar 

  42. J. W. Cahn and J.E. Hilliard:Acta Metall., 1958, vol. 7, p. 219.

    Google Scholar 

  43. J. R. Rellick and C. J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, p. 2439.

    CAS  Google Scholar 

  44. H. Ohtani, H.C. Feng, and C. J. McMahon, Jr.:Metall. Trans., 1974, vol. 5, p. 516.

    Google Scholar 

  45. An Introduction to the Mechanics of Solids, T. J. Lardner, ed., second edition, p. 441, McGraw-Hill, 1972.

  46. C. Zener:Elasticity and Anelasticity of Metals, p. 13, Univerisity of Chicago Press, 1948.

  47. J. P. Hirth and J. Lothe: Theory of Dislocations, p. 762, McGraw-Hill, 1968.

  48. G. C. Sih and J. R. Rice:J. Appl. Mech., 1964, vol. 86, p. 477.

    Google Scholar 

  49. J. R. Rice and G. C. Sih:J. Appl. Mech., 1964, vol. 86, p. 418.

    Google Scholar 

  50. G. C. Sih: Tech. Report AFOSR-TR-73-1, 1973.

  51. J. P. Hirth:Metall. Trans., 1972, vol. 3, p. 3047.

    CAS  Google Scholar 

  52. K. Tangri and K. Tandon:Grain Boundaries in Engineering Materials, p. 327, Claitor’s Publishing Division, 1975.

  53. R. E. Hook and J. P. Hirth:Acta Metall., 1967, vol. 15, p. 535.

    Article  CAS  Google Scholar 

  54. E. Orowan:Rep. Prog. Phys., 1948, vol. 12, p. 185.

    Article  Google Scholar 

  55. R. G. Rowe:Metall. Trans., 1979, vol. 10A, p. 997.

    CAS  Google Scholar 

  56. G. Dimon and K. T. Aust:Acta Metall., 1974, vol. 22, p. 27.

    Article  Google Scholar 

  57. J. R. Rice and R. Thomson:Philos. Mag., 1974, vol. 29, p. 73.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Formerly of Clemson University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, R.G., White, C.L., Wert, J.J. et al. On the mechanism of intergranular embrittlement by phosphorus in transformer steel. Metall Trans A 12, 1339–1351 (1981). https://doi.org/10.1007/BF02642348

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02642348

Keywords

Navigation