Skip to main content
Log in

Jasmonates—Signals in plant-microbe interactions

  • Thematic Articles
  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Within their environment, plants interact with a wide range of microorganisms, some of which are pathogenic and cause disease, and others that are beneficial and stimulate plant growth or activate natural defenses. To recognize and respond to this variety of pathogenic and beneficial microorganisms, plants have developed sophisticated strategies to “perceive” microorganisms and translate that “perception” into an appropriate adaptive response. This plant innate immune response is surprisingly complex and highly flexible in its capacity to recognize and respond to different invaders. Jasmonic acid and derivatives, collectively called jasmonates (JAs), have emerged as important signals in the regulation of plant responses to pathogenic and beneficial microorganisms. The complex interplay of JAs with the alarm signals salicylic acid (SA) and ethylene (ET) provides plants with a regulatory potential that shapes the ultimate outcome of the plant-microbe interaction. In this review, we present an overview of the key role of JAs in basal and induced resistance to pathogens, their possible implication in the establishment and functioning of beneficial plant-microbe associations; and our current knowledge on how the JA signaling pathway cross-communicates with SA- and ET-dependent signaling pathways to fine-tune defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Audenaert K, De Meyer GB, Hofte MM. 2002. Abscisic acid determines basal susceptibility of tomato toBotrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128:491–501.

    PubMed  CAS  Google Scholar 

  • Baldwin IT, Kessler A, Halitschke R. 2002. Volatile signaling in plant-plant-herbivore interactions: What is real? Curr Opinion Plant Biol 5351354.

  • Berger S. 2002. Jasmonate-related mutants ofArabidopsis as tools for studying stress signaling. Planta 214:497–504.

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A. 2004. Ethylene response factor I mediates Arabidopsjs resistance to the soilborne fungusFusarium oxysporum. Mol Plant-Microbe Interact 17:763–770.

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo M, Molina A, Solano R. 2002. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 inArabidopsis confers resistance to several necrotrophic fungi. Plant J 29:23–32.

    PubMed  CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X. 1997. Thecpr5 mutant ofArabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell 9:1573–1584.

    PubMed  CAS  Google Scholar 

  • Buzi A, Chilosi G, De Sillo D, Magro P. 2004. Induction of resistance in melon toDidymella bryoniae andSclerotinia sclerotiorum by seed treatments with acibenzolar-S-methyl and methyl jasmonate but not with salicylic acid. J Phytopathol 152:34–42.

    CAS  Google Scholar 

  • Cheong J-J, Choi YD. 2003. Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413.

    PubMed  CAS  Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X. 2000. Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance inArabidopsis. Plant Cell 12:2175–2190.

    PubMed  CAS  Google Scholar 

  • Cohen Y, Gisi U, Niderman T. 1993. Local and systemic protection againstPhytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathol 83:1054–1062.

    CAS  Google Scholar 

  • Conrath U, Pieterse CMJ, Mauch-Mani B. 2002. Priming in plant-pathogen interactions. Trends Plant Sci 7:210–216.

    PubMed  CAS  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-PearsonV. 1998. Cell defense responses associated with localized and systemic resistance toPhytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant-Microbe Interact 11:1017–1028.

    CAS  Google Scholar 

  • Dangl JL, Jones JDG. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826–833.

    PubMed  CAS  Google Scholar 

  • Desikan R, Hancock JT, Ichimura K, Shinozaki K, Neill SJ. 2001. Harpin induces activation of theArabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6. Plant Physiol 126:1579–1587.

    PubMed  CAS  Google Scholar 

  • Devadas SK, Enyedi A, Raina R. 2002. TheArabidopsis hrll mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signalling in cell death and defence against pathogens. Plant J 30:467–480.

    PubMed  CAS  Google Scholar 

  • Devoto A, Turner JG. 2003. Regulation of jasmonate-mediated plant responses in Arabidopsis. Ann Bot-London 92:329–337.

    CAS  Google Scholar 

  • Devoto A, Nieto-Rostro M, Xie DX, Ellis, C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG. 2002. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex inArabidopsis. Plant J 32:457–466.

    PubMed  CAS  Google Scholar 

  • Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol 108:1741–1746.

    PubMed  CAS  Google Scholar 

  • Doherty HM, Selvendran RR, Bowles DJ. 1988. The wound response of tomato plants can be inhibited by aspirin and related hydroxy-benzoic acids. Physiol Mol Plant Pathol 33:377–384.

    CAS  Google Scholar 

  • Dong X. 2001. Genetic dissection of systemic acquired resistance. Curr Opinion Plant Biol 4:309–314.

    CAS  Google Scholar 

  • Droby S, Porat R, Cohen L, Weiss B, Shapiro B, Philosoph-Hadas S, Meir S. 1999. Suppressing green mold decay in grapefruit with postharvest jasmonate application. J Am Soc Hort Sci 124:184–188.

    CAS  Google Scholar 

  • Dubery IA, Teodorczuk LG, Louw AE. 2000. Early responses in methyl jasmonate-preconditioned cells toward pathogen-derived elicitors. Mol Cell Biol Res Commun 3:105–110.

    PubMed  CAS  Google Scholar 

  • Ellis C, Turner JG. 2001. TheArabidopsis mutantcev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13:1025–1033.

    PubMed  CAS  Google Scholar 

  • Ellis C, Karafyllidis L, Turner JG. 2002. Constitutive activation of jasmonate signaling inArabidopsis mutant correlates with enhanced resistance toErysiphe cichoracearum, Pseudomonas syringae, andMyzus persicae. Mol Plant-Microbe Interact 15:1025–1030.

    PubMed  CAS  Google Scholar 

  • Feys BJ, Parker JE. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet 16:449–455.

    PubMed  CAS  Google Scholar 

  • Feys BJF, Benedetti CE, Penfold CN, Turner JG. 1994.Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. Plant Cell 6:751–759.

    PubMed  CAS  Google Scholar 

  • Fidanstsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM. 1999. Signal interactions in pathogen and insect attack: expression of lipoxygenase, proteinase inhibitor II, and pathogenesis-related protein P4 in the tomato,Lycopersicon esculentum. Physiol Mol Plant Pathol 54:97–114.

    Google Scholar 

  • Gianinazzi-Pearson V. 1996. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883.

    PubMed  Google Scholar 

  • Glazebrook J, Chen WJ, Estes B, Chang HS, Nawrath C, Metraux JP, Zhu T, Katagiri F. 2003. Topology of the network integrating salicylate and jasmonate signal transduction derived from global expression phenotyping. Plant J 34:217–228.

    PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A. 2000. The hypersensitive reaction facilitates plant infection by the necrotrophic fungusBotrytis cinerea. Curr Biol 10:751–757.

    PubMed  CAS  Google Scholar 

  • Gundlach H, Mueller MJ, Kutchan TM, Zenk MH. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89:2389–2393.

    PubMed  CAS  Google Scholar 

  • Harms K, Ramirez I, Pena-Cortes H. 1998. Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 118:1057–1065.

    PubMed  CAS  Google Scholar 

  • Hase S, Van Pelt JA, Van Loon LC, Pieterse, CMJ. 2003. Colonization ofArabidopsis roots byPseudomonas fluorescens primes the plant to produce higher levels of ethylene upon pathogen infection. Physiol Mol Plant Pathol 62:219–226.

    CAS  Google Scholar 

  • Hause B, Maier W, Miersch O, Kramell R, Strack D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol 130:1213–1220.

    PubMed  CAS  Google Scholar 

  • He P, Chintamanani S, Chen ZY, Zhu L, Kunkel BN, Alfano JR, Tang X, Zhou JM. 2004. Activation of a COI1-dependent pathway inArabidopsis byPseudomonas syringae type III effectors and coronatine. Plant J 37:589–602.

    PubMed  CAS  Google Scholar 

  • Heck S, Grau T, Buchala A, Metraux J-P, Nawrath C. 2003. Genetic evidence that expression of NahG modifies defence pathways independent of salicylic acid biosynthesis in theArabidopsis-Pseudomonas syringae pv. tomato interaction. Plant J 36:342–352.

    PubMed  CAS  Google Scholar 

  • Holt BF, Hubert DA, Dangl JL. 2003. Resistance gene signaling in plants—complex similarities to annimal innate immunity. Curr Opinion Immunol 15:20–25.

    CAS  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Metraux J-P. 2003. Induced systemic resistance inArabidopsis thaliana in response to root inoculation withPseudomonas fluorescens CHA0. Mol Plant-Microbe Interact 16:851–858.

    PubMed  CAS  Google Scholar 

  • Jameson PE. 2000. Cytokinins and auxins in plant-pathogen interactions—an overview. J Plant Growth Regul 32:369–380.

    CAS  Google Scholar 

  • Karban R, Baldwin IT, Baxter KJ, Laue G, Felton GW. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66–71.

    Google Scholar 

  • Kauss H, Krause K, Jeblick W. 1992. Methyl jasmonate conditions parsley suspension cells for increased elicitation of phenylpropanoid defense responses. Biochem Biophys Res Commun 189:304–308.

    PubMed  CAS  Google Scholar 

  • Kauss H, Jeblick W, Ziegler J, Krabler W. 1994. Pretreatment of parsley (Petroselinum crispum L.) suspension cultures with methyl jasmonate enhances elicitation of activated oxygen species. Plant Physiol 105:89–104.

    PubMed  CAS  Google Scholar 

  • Kinkema M, Fan W, Dong X. 2000. Nuclear localization of NPR1 is required for activation ofPR gene expression. Plant Cell 12:2339–2350.

    PubMed  CAS  Google Scholar 

  • Kistner C, Parniske M. 2002. Evolution of signal transduction in intracellular symbiosis. Trends Plant Sci 7:511–518.

    PubMed  CAS  Google Scholar 

  • Kloek AP, Verbsky ML, Sharma SB, Schoolz JE, Vogel J, Klessig DF, Kunkel BN. 2001. Resistance toPseudomonas syringae conferred by anArabidopsis thaliana coronatine-insensitive (coi 1 mutation occurs through two distinct mechanisms. Plant J 26:509–522.

    PubMed  CAS  Google Scholar 

  • Kozlowski G, Buchala A, Metraux J-P. 1999. Methyl jasmonate protects Norway spruce [Picea abies (L.) Karst] seedlings againstPythium ultimum. Trow Physiol Mol Plant Pathol 55:53–58.

    CAS  Google Scholar 

  • Krishna P. 2003. Brassinosteroid-mediated stress responses. J Plant Growth Regul 22: 289–297.

    PubMed  CAS  Google Scholar 

  • Kunkel BN, Brooks DM. 2002. Cross-talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331.

    PubMed  CAS  Google Scholar 

  • Li J, Brader G, Palva ET. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylatemediated signals in plant defense. Plant Cell 16:319–331.

    PubMed  CAS  Google Scholar 

  • Liu J, Blaylock LA, Endre G, Cho J, Town CD, VandenBosch KA, Harrison MJ. 2003. Transcript profilling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis. Plant Cell 15:2106–2123.

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. 2003. Ethylene response factor 1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178.

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Chico JM, Sanchez-Serrano JJ, Solano R. 2004. Jasmonate-insensitivel encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses inArabidopsis. Plant Cell 16:1938–1950.

    PubMed  CAS  Google Scholar 

  • Martinez C, Blanc F, Le Claire F, Besnard O, Nicole M, Baccou JC. 2001. Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase fromTrichoderma longibrachiatum. Plant Physiol 127:334–344.

    PubMed  CAS  Google Scholar 

  • McDowell JM, Dangl JL. 2000. Signal transduction in the plant immune response. Trends Biochem Sci 25:79–82.

    PubMed  CAS  Google Scholar 

  • Meir S, Droby S, Davidson H, Alsevia S, Cohen L, Horev B, Philosoph-Hadas S. 1998. Suppression ofBotrytis rot in cut rose flowers by postharvest application of methyl jasmonate. Postharvest Biol Technol 13:235–243.

    CAS  Google Scholar 

  • Michelmore RW. 2003. The impact zone: genomics and breeding for durable disease resistance. Curr Opinion Plant Biol 6:397–404.

    Google Scholar 

  • Nakashita H, Yasuda M, Nitta T, Asami T, Fulioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S. 2003. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898.

    PubMed  CAS  Google Scholar 

  • Nimchuk Z, Eulgem T, Holt III BF, Dangl JL. 2003. Recognition and response in the plant immune system. Annu Rev Genet 37:579–609.

    PubMed  CAS  Google Scholar 

  • Norman-Setterblad C, Vidal S, Palva TE. 2000. Interacting signal pathways control defense gene expression inArabidopsis in response to cell wall-degrading enzymes fromErwinia carotovora. Mol Plant-Microbe Interact 13:430–438.

    PubMed  CAS  Google Scholar 

  • Nurnberger T, Brunner F, Kemmerling B, Plater L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266.

    PubMed  Google Scholar 

  • O'Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917.

    PubMed  Google Scholar 

  • Overmyer K, Tuominen H, Kettunen R, Betz C, Langebarteis C, Sandermann H, Kangasiaryl J. 2000. Ozone sensitiveArabidopsis rcdl mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12:1849–1862.

    PubMed  CAS  Google Scholar 

  • Parbery DG. 1996. Trophism and the ecology of fungi associated with plants. Biol Rev Cambridge Philosophic Soc 71:473–527.

    Google Scholar 

  • Parniske M. 2000. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?. Curr Opinion Plant Biol 3:320–328.

    CAS  Google Scholar 

  • Pena-Cortes H, Albrecht T, Prat S, Weiler EW, Willmitzer L. 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128.

    CAS  Google Scholar 

  • Penninckx IAMA, Thomma BPHJ, Buchala A, Metraux J-P, Broekaert WF. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene inArabidopsis. Plant Cell 10:2103–2113.

    PubMed  CAS  Google Scholar 

  • Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen HB, Lacy M, Austin MJ, Parker JE, Sharma SB, Klesslg DF, Martlenssen R, Mattsson O, Jensen AB, Mundy J. 2000.Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103:1111–1120.

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Loon LC. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci 4:52–58.

    PubMed  Google Scholar 

  • Pieterse CMJ, Van Loon LC. 2004. NPR1: the spider in the web of induced resistance signaling pathways. Curr Opinion Plant Biol 7:456–464.

    CAS  Google Scholar 

  • Pieterse CMJ, Ton J, Van Loon LC. 2001. Cross-talk between plant defence signalling pathways: boost or burden?. AgBiotechNet 3: ABN 068.

  • Pieterse CMJ, Van Wees SCM, Hoffland E, Van Pelt JA, Van Loon LC. 1996. Systemic resistance inArabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237.

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Ton J, Van Pelt JA, Van Loon LC. 2002. Signalling in rhizobacteria-induced systemic resistance inArabidopsis thaliana. Plant Biol 4:535–544.

    CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Verhagen BWM, Ton J, Van Wees, SCM, Leon-Kloosterziel KM, Van Loon LC. 2003. Induced systemic resistance by plant growth-promoting rhizobacteria. Symbiosis 35:39–54.

    CAS  Google Scholar 

  • Pieterse CMJ, Van Wees SCM, Van Pelt JA, Knoester M, Laan R, Gerrits N, Welsbeek PJ, Van Loon LC. 1998. A novel signaling pathway controlling induced systemic resistance inArabidopis. Plant Cell 10:1571–1580.

    PubMed  CAS  Google Scholar 

  • Pieterse CMJ, Van Pelt JA, Ton J, Parchmann S, Mueller MJ, Buchala AJ, Metraux J-P, Van Loon LC. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) inArabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol Mol Plant Cathol 57:123–134.

    CAS  Google Scholar 

  • Pozo MJ, Dumas-Gaudot E, Azcon-Aguilar C, Barea JM. 1998. Chitosanase and chitinase activities in tomato roots during interactions with arbuscular mycorrhizal fungi orPhytophthora parasitica. J Exp Bot 49:1729–1739.

    CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C, Dumas-Gaudot E, Barea JM. 1999. β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/orPhytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157.

    CAS  Google Scholar 

  • Pozo MJ, Slezack-Deschaumes S, Dumas-Gaudot, E, Gianinazzi S, Azcon-Aguilar, C (2002a) “Plant defense responses induced by arbuscular mycorrhizal fungi” In: Gianinazzi, S, Schuepp, H, Haselwandter, K, Barea, JM (editors),Mycorrhizal Technology in Agriculture: From Genes to Bioproducts, ALS Birkhauser Verlag, Basek, pp 103–111.

    Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazz S, Barea JM, Azcon-Agullar C. 2002b. Localizedvs systemic effect of arbuscular mycorrhizal fungi on defence responses toPhytophthora infection in tomato plants. J Exp Bot 53:525–534.

    PubMed  CAS  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW. 1997. Salicylic acid produced bySerratia marcescens 91–166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant-Microbe Interact 10:761–768.

    CAS  Google Scholar 

  • Preston CA, Lewandowski C, Enyedi AJ, Baldwin IT. 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209:87–95.

    PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Weller DM. 1998. Natural plant protection by 2,4-diacetylphloroglucinol-producingPseudomonas spp. in take-all decline soils. Mol Plant-Microbe Interact 11:144–152.

    CAS  Google Scholar 

  • Regvar M, Gogala N, Zalar P. 1996. Effects of jasmonic acid on mycorrhizalAllium sativum. New Phytol 134:703–707.

    CAS  Google Scholar 

  • Regvar M, Gogala N, Znidarsic N. 1997. Jasmonic acid effects mycorrhization of spruce seedlings withLaccaria laccata. Trees-Struct Funct 11:511–514.

    Google Scholar 

  • Reymond P, Farmer EE. 1998. Jasmonate and salicylate as global signals for defense gene expression. Curr Opinion Plant Biol 1:404–411.

    CAS  Google Scholar 

  • Rojo E, Leon J, Sanchez-Serrano JJ. 1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression inArabidopsis thaliana. Plant J 20:135–142.

    PubMed  CAS  Google Scholar 

  • Rojo E, Solano R, Sanchez-Serrano JJ. 2003. Interactions between signaling compounds involved in plant defense. Plant Growth Regul 22:82–98.

    CAS  Google Scholar 

  • Rosas S, Soria R, Correa N, Abdala G. 1998. Jasmonic acid stimulates the expression of nod genes inRhizobium. Plant Mol Biol 38:1161–1168.

    PubMed  CAS  Google Scholar 

  • Ryu C-M, Hu C-H, Reddy MS, Kloepper JW. 2003. Different signaling pathways of induced resistance by rhizobacteria inArabidopsis thaliana against two pathovars ofPseudomonas syringae. New Phytologist 160:413–420.

    CAS  Google Scholar 

  • Ryu C-M, Murphy JF, Mysore KS, Kloepper JW. 2004. Plant growth-promoting rhizobacteria systemically protectArabidopsis thaliana againstCucumber mosaic virus by a salicylic acid and NPR1-independent and jasmonic acid-dependent signaling pathway. Plant J 39:381–392.

    PubMed  CAS  Google Scholar 

  • Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T, Awai K, Amagai M, Kuwata C, Tsugane T, Masuda T, Shimada H, Takamiya X, Ohta H, Tabata S. 2001. Monitoring of methyl jasmonate-responsive genes inArabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8:153–161.

    PubMed  CAS  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. 2000. Coordinated plant defense responses inArabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660.

    PubMed  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM. 1987. Interactions of deleterious and beneficial rhizosphere micoorganisms and the effect of cropping practices. Ann Rev Phytopathol 115:339–358.

    Google Scholar 

  • Schweizer P, Gees R, Mosinger E. 1993. Effect of jasmonic acid on the interaction of barley (Hordeum-Vulgare L) with the powdery mildewErysiphe graminis f sphordei. Plant Physiol 102:503–511.

    PubMed  CAS  Google Scholar 

  • Schweizer P, Buchala A, Metraux J-P. 1997. Gene-expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2,6-dichloroisonicotinic acid. Plant Physiol 115:61–70.

    PubMed  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong J-J, Lee YH, Lee YW, Hwang I, Lee JS, Chol YD. 2001. Jasmonic acid carboxyl methyltransferase: A key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci USA 98:4788–4793.

    PubMed  CAS  Google Scholar 

  • Shoji T, Nakajima K, Hashimoto T. 2000. Ethylene suppresses jasmonate-induced gene expression in nicotine biosynthesis. Plant Cell Physiol 41:1072–1076.

    PubMed  CAS  Google Scholar 

  • Slusarenko, AJ, Fraser, RSS, Van Loon, LC (2000) In:Mechanisms of-resistance to plant diseases, Kluwer Academic Publishers, Dordrecht, pp 620.

    Google Scholar 

  • Somssich IE, Hahlbrock K. 1998. Pathogen defence in plant—a paradigm of biological complexity. Trends Plant Sci 3:86–90.

    Google Scholar 

  • Spoel SH, Koornneef A, Claessens SMC, Korzelus JP, Van Pelt JA, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazzan K, Van Loon LC, Dong XN, Pieterse CMJ. 2003. NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defence pathways through a novel function in the cytosol. Plant Cell 15:760–770.

    PubMed  CAS  Google Scholar 

  • Staswick PE, Yuen GY, Lehman CC. 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungusPythium irregulare. Plant J. 15:747–754.

    PubMed  CAS  Google Scholar 

  • Tao Y, Xie ZY, Chen WQ, Glazebrook J, Chang HS, Han B, Zhu T, Zou GZ, Katagiri F. 2003. Quantitative nature, ofArabidopsis responses during compatible and incompatible interactions with the bacterial pathogenPseudomonas syringae. Plant Cell 15:317–330.

    PubMed  CAS  Google Scholar 

  • Thaler J, Bostock RM. 2004. Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects. Ecology 85:48–58.

    Google Scholar 

  • Thaler JS, Owen B, Higgins VJ. 2004. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135:530–538.

    PubMed  CAS  Google Scholar 

  • Thaler JS, Fidantsef AL, Bostock RM. 2002. Antagonism between-jasmonate-and salicylate-mediated induced plant resistance: effects of concentration and timing of elicitation on defense-related proteins, herbivore, and pathogen performance in tomato. J Chem Ecol 28:1131–1159.

    PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Broekaert WF, Cammue BPA. 2000. Disease development of several fungi onArabidopsis can be reduced by treatment with methyl jasmonate. Plant Physiol Biochem 38:421–427.

    CAS  Google Scholar 

  • Thomma BPHJ, Penninckx IAMA, Cammue BPA, Brockaert WF. 2001. The complexity of disease signaling inArabidopsis. Curr Opinion Immunol 13:63–68.

    CAS  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Brockaert WF. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways inArabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95:15107–15111.

    PubMed  CAS  Google Scholar 

  • Ton J, Mauch-Mani B. 2004. β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant J 38:119–130.

    PubMed  CAS  Google Scholar 

  • Ton J, Van Pelt JA, Van Loon LC, Pieterse CMJ. 2002a. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance inArabidopsis. Mol Plant-Microbe Interact 15:27–34.

    PubMed  CAS  Google Scholar 

  • Ton J, De Vos M, Robben C, Buchala AJ, Metraux J-P, Van Loon LC, Pieterse CMJ. 2002b. Characterisation ofArabidopsis-enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J 29:11–21.

    PubMed  CAS  Google Scholar 

  • Tuominen H, Overmyer K, Keinanen M, Kollis H, Kangasjarvi J 2004. Mutual antagonism of ethylene and jasmonic acid regulates ozone-induced spreading cell death inArabidopsis. Plant J 39:59–69.

    PubMed  CAS  Google Scholar 

  • Van Loon, LC (2000) “Systemic induced resistance” In: Slusarenko, AJ, Fraser, RSS, Van Loon, LC (editors),Mechanisms of Resistance to Plant Diseases, Dordrecht Kluwer Academic Publishers, The Netherlands, pp 521–574.

    Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ. 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483.

    PubMed  Google Scholar 

  • Van Oosten, VR, De Vos, M, Van Pelt, JA, Van Poecke, RMP, Van Loon, LC, Dicke, M, Pieterse, CMJ (2004) Signal signature in induced defense ofArabidopsis upon pathogen and insect attack. Biology of plant-microbe interactions. The International Society for Molecular Plant-Microbe Interactions (in press).

  • Van Wees SCM, Glazebrook J. 2003. Loss of non-host resistance ofArabidopsis NahG toPseudomonas syringae pv.phaseolicola is due to degradation products of salicylic acid. Plant J 33:733–742.

    PubMed  Google Scholar 

  • Van Wees SCM, Luijendijk M, Smoorenburg I, Van Loon LC, Pieterse CMJ. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) inArabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible geneAtvsp upon challenge. Plant Mol Biol 41:537–549.

    PubMed  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways inArabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716.

    PubMed  Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van't Westende YAM, Hartog F, Van Loon LC. 1997. Differential induction of systemic resistance inArabidopsis by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724.

    PubMed  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, Van Loon LC, Pieterse CMJ. 2004. The transcriptome of rhizobacteria-induced systemic resistance inArabidopsis. Mol Plant-Microbe Interact 17:895–908.

    PubMed  CAS  Google Scholar 

  • Vijayan P, Shockey J, Levesque CA, Cook RJ, Browse J. 1998. A role for jasmonate in pathogen defense ofArabidopsis. Proc Natl Acad Sci USA 95:7209–7214.

    PubMed  CAS  Google Scholar 

  • Walters D, Cowley T, Mitchell A. 2002. Methyl jasmonate alters polyamine metabolism and induces systemic protection against powdery mildew infection in barley seedlings. J Exp Bot 53:747–756.

    PubMed  CAS  Google Scholar 

  • Wasternack, C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Progress in Nucleic Acid Research and Molecular Biology, Vol. 72, pp 165–221.

    PubMed  CAS  Google Scholar 

  • Xu L, Liu F, Lechner E, Genschik P, Crosby WL, Ma H, Peng W, Huang DF, Xie DX. 2002. The SCFCO11 ubiquitin-ligase complexes are required for jasmonate response inArabidopsis. Plant Cell 14:1919–1935.

    PubMed  CAS  Google Scholar 

  • Xu Y, Chang P-FL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085.

    PubMed  CAS  Google Scholar 

  • Yan Z, Reddy MS, Ryu C-M, McInroy JA, Wilson M, Kloepper JW. 2002. Induced systemic protection against tomato late blight elicited by plant growth-promoting rhizobacteria. Phytopathol 92:1329–1333.

    CAS  Google Scholar 

  • Zhang S, Moyne A-L, Reddy MS, Kloepper JW. 2002. The role of salicylic acid in induced systemic resistance elicited by plant growth-promoting rhizobacteria against blue mold of tobacco. Biol Control 25:288–296.

    Google Scholar 

  • Zhao YF, Thilmony R, Bender CL, Schaller A, He SY, Howe GA. 2003. Virulence systems ofPseudomonas syringae pv.tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corné M. J. Pieterse.

Additional information

Online publication: 17 January 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozo, M.J., Van Loon, L.C. & Pieterse, C.M.J. Jasmonates—Signals in plant-microbe interactions. J Plant Growth Regul 23, 211–222 (2004). https://doi.org/10.1007/BF02637262

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02637262

Key words

Navigation