Skip to main content
Log in

Summary

Landslides can cause seismic disturbances; landslides can also result from seismic disturbances, and earthquake-induced slides have caused loss of life in many countries. Slides can cause disastrous flooding, particularly when landslide dams across streams are breached, and flooding may trigger slides. Slope movement in general is a major process of the geologic environment that places constraints on engineering development. In order to understand and foresee both the causes and effects of slope movement, studies must be made on a regional scale, at individual sites, and in the laboratory.

Areal studies — some embracing entire countries — have shown that certain geologic conditions on slopes facilitate landsliding; these conditions include intensely sheared rocks; poorly consolidated, fine-grained clastic rocks; hard fractured rocks underlain by less resistant rocks; or loose accumulations of fine-grained surface debris.

Field investigations as well as mathematical- and physical-model studies are increasing our understanding of the mechanism of slope movement in fractured rock, and assist in arriving at practical solutions to landslide problems related to all kinds of land development for human use. Progressive failure of slopes has been studied in both soil and rock mechanics. New procedures have been developed to evaluate earthquake response of embankments and slopes. The finite element method of analysis is being extensively used in the calculation of slope stability in rock broken by joints, faults, and other discontinuities.

Résumé

Les éboulements de terrain peuvent créer des perturbations séismiques; ils peuvent également résulter de perturbations séismiques, et des éboulements produits par tremblement de terre ont coûté des vies dans plusieurs pays. Les éboulements peuvent entraîner des inondations désastreuses, particulièrement quand les barrages de matériel éboulé en travers d’un fleuve se rompent, les inondations peuvent déclancher des éboulements. Le mouvement de masse sur les pentes est en général un processus majeur de l’environnement géologique qui place plusieures contraintes sur les développements de la science de l’ingénieur. Pour comprendre et prévoir à la fois les causes et les effets des mouvements de masse sur les pentes, il faut faire des études à l’échelle régionale, au niveau du site particulier et dans le laboratoire.

Les études régionales, certaines couvrant des pays entiers, ont montré que certaines conditions géologiques sur les pentes facilitent les éboulements de terrain; ces conditions englobent les roches intensément cisaillées, les roches finement fragmentées et pauvrement consolidées, les roches dures fracturées reposant sur des roches moins résistantes, ou les accumulations meubles de fin matériel de surface.

Les études de terrain, aussi bien que les études de models mathématiques et physiques, augmentent notre compréhension des mécanismes à la base des éboulements dans des roches fracturées; elles aident à trouver des solutions pratiques au problème des éboulements de terrain ayant trait à de nombreuses activités humaines. La rupture progressive des pentes a été étudiée à la fois en mécanique des sols et en mécanique des roches. De nouveaux procédés ont été développés pour évaluer la réaction des pentes et des talus aux tremblements de terre. La méthode de l’élément fini est utilisée très fréquemment pour le calcul de la stabilité des pentes dans les roches fracturées par des diaclases, par des failles, et par d’autres discontinuités.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • ANDERSON R.A. — SCHUSTER R.L. (1970) : Stability of slopes in clay shales interbedded with Columbia River basalt: Proceedings of the 8th Annual Engineering Geology and Soils Engineering Symposium, Pocatello, Idaho, April 1–3, 1970, p. 273–284.

  • ARANGO I. — SEED H.B. (1974): Seismic stability and deformation of clay slopes: Jour. Geotechnical Engineering Div., Proc., Am. Soc. Civil Engrs., v. 100, no. GT 2, p. 139–156.

    Google Scholar 

  • AVGHERINOS P.J. — SCHOFIELD A.N. (1969): Drawdown failures of centrifuged models: Proc. 7th Int. Conf. on Soil Mech. and Found. Eng., v. II, p. 497–505.

    Google Scholar 

  • BARTON N. (1974): Rock slope performance as revealed by a physical joint model: Int. Soc. for Rock Mech. Cong.,Denver, vol. II, part B, p. 765–773.

    Google Scholar 

  • BASSETT R.H. (1973): Centrifugal model tests of embankments on soft alluvial foundations: Proc. 8th Int. Conf. on Soil Mech. and Found. Eng., v. 22, p. 23–30.

    Google Scholar 

  • BEA R.G. — BERNARD H.A. ARNOLD P. — DOYLE E.H. (1975): Soil movements and forces developed by wave-induced slides in the Mississippi Delta: Jour. Petroleum Technology, v. 27, p. 500–514.

    Article  Google Scholar 

  • BECK A.C. (1968): Gravity faulting as a mechanism of topographic adjustment: New Zealand Jour. Geology and Geophysics, v. 11, no. 1, p. 191–199.

    Article  Google Scholar 

  • BERNAIX J. (1974): Properties of rock and rock masses: Proc. of 3rd Cong., Int. Soc. Rock Mech., v. 1, Pt. A, p. 9–38.

    Google Scholar 

  • BISHOP F.W. (1973): The stability of tips and spoil heaps: Quart. Jour. Engineering Geology, v. 6, p. 335–376.

    Article  Google Scholar 

  • BJERRUM Laurits (1967): Progressive failure in slopes of overconsolidated plastic clay and clay shales: Am. Soc. Civil Engrs. Proc., Jour. of the Soil Mech. and Found. Div., v. 93, no. SM 5. Part 1, p. 3–49.

    Google Scholar 

  • BLAKE M.C. Jr. — JONES D.L. (1974): Origin of Franciscan melanges in northern California,in DOTT R.H., Jr., and SHAUER, R.H., eds., Modern and ancient geosynclinal sedimentation: Soc. of Econ. Paleontologists and Mineralogists, Spec. Pub. No. 19, p. 345–357.

  • BLAKE M.C. Jr. — SMITH J.T. — WENTWORTH C.M. — WRIGHT R.H. (1971): Preliminary geologic map of western Sonoma County and northernmost Marin County, California: U.S. Geol. Survey open-file map, scale 1:62,500.

    Book  Google Scholar 

  • BRABB E.E. — PAMPEYAN E.H. — BONILLA M.G. (1972): Landslide susceptibility in San Mateo County. California: U.S. Geol. Survey Misc. Field Studies Map MF-360.

    Google Scholar 

  • BRAWNER, C.O. (1970): Remarks during symposium on Theme 7, Stability of natural and excavation slopes: permanent and temporary: Proc. 2nd Int. Soc. Rock Mech. Cong., Beograd, v. 4, p. 571–572.

    Google Scholar 

  • BRAWNER C.O. (1972): Redesign and construction of a tailings dam to resist earthquakes,in BRAWNER, C.O., and MILLIGAN, V., Geotechnical practice for stability in open pit mining: Proc. of 2nd Int. Conference on stability in open pit mining, Vancouver, 1971, p. 133–150.

  • BRAY J.W. (1967): A study of jointed and fractured rock, Part I, Fracture patterns and their failure characteristics; Part II, Theory of limiting equilibrium: Rock Mechanics and Engineering Geology, v. 2–3, p. 117–136; v. 4, p. 197–216.

    Google Scholar 

  • BROADBENT C.D. — KO K.C. (1972): Rheological aspects of rock slope failures,in Stability of rock Slopes: Proc. 13th Symposium on Rock Mechanics, Urbana, Illinois, 1971, Amer. Soc. Civil. Eng., — New York, p. 579–593.

  • CAMPBELL R.H. (1975): Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, southern California: U.S. Geol. Survey Prof. Paper 851, 51 p.

  • CARRARA A. — MERENDA L. (1976): Landslide inventory in northern Calabria, southern Italy: Geol. Soc. America Bull. (in press).

    Google Scholar 

  • CLEVELAND G.B. (1971): Regional landslide prediction: Calif. Div. Mines and Geologyfor U.S. Dep’t. of Housing and Urban Development.

  • CLEVELAND G.B. (1973): Fire+rain=mudflows, Big Sur 1972: California Geology, June 1973, p. 127–135.

  • CLOSE U. — McCORMICK E. (1922): Where the mountains walked: Nat. Geog. Mag., v. 41, p. 445–464.

    Google Scholar 

  • COLTON R.B. and others (1975): Preliminary map of landslide deposits, Montrose 1° × 2° quadrangle, Colorado: U.S. Geol. Survey Misc. Field Studies Map ME-702. (Maps also available of Vernal, Grand Junction, Moab, Cortez, Craig, Leadville, Durango, Greeley, Denver, Pueblo, Trinidad, and La Junta quadrangles.)

  • CRANDELL D.R. (1971): Postglacial lahars from Mount Rainier Volcano, Washington: U.S. Geol. Survey Prof. Paper 677.

    Google Scholar 

  • DAVIES W.E. (1967), Geologic hazards of coal refuse banks (abs): Geol. Soc. America Abst. vol., Annual meeting, New Orleans, p. 43.

  • DAVIES W.E. (1968): Coal waste bank stability: Mining Congress Journal, v. 54, no. 7, p. 19–24.

    Google Scholar 

  • DAVIES W.E. (1974): Landslide susceptibility map of the Braddock 7–1/2’ quadrangle, Allegheny County and vicinity, Pennsylvania: U.S. Geol. Survey Open-File Rept. 74–273.

    Google Scholar 

  • DAVIES W.E. — BAILEY J.F. — KELLY D.B. (1972): West Virginia’s Buffalo Creek flood; a study of the hydrology and engineering geology: U.S. Geol. Survey Circ. 677, 32 p.

  • DOBRY R. — ALVAREZ L. (1967): Seismic failures of Chilean tailings dams: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 93, no. SM6, p. 237–260.

    Google Scholar 

  • EINSTEIN H.H. — HIRSCHFELD R.C. (1973): Model studies on mechanics of jointed rock: Jour. Soil Mech. and Found, Div., Proc. Am. Soc. Civil Engrs., v. 99, no. SM3, p. 229–248.

    Google Scholar 

  • ERICKSEN G.E. — PLAFKER G. — CONCHA J.F. (1970): Preliminary report on the geologic events associated with the May 31, 1970, Peru earthquake: U.S. Geol. Survey Circ. 639, 25 p.

  • EVANS J.R. — GRAY C.H. Jr. (1971): Analysis of mudslide risk in southern Ventura County, Calif: Calif. Div. Mines and Geologyfor U.S. Dep’t. of Housing and Urban Development.

  • FLEYSHMAN S.M. (1970): Seli (mud streams): Gidrometeorologicheskoye Izdatel’stvo, Lenigrad, 352 p. (In Russian).

  • FORSTER D.F. (1933): Treacherous slides delay Cloverdale-Hopland realignment: Pacific Street and Road Builder, v. XXXII, no. 2, p. 13–15.

    Google Scholar 

  • FRIZZELL V.A. Jr. (1974): Reconnaissance photointerpretation map of landslides in parts of the Hopland, Kelseyville, and Lower Lake 15-minute quadrangles, Sonoma County, California: U.S. Geol. Survey Misc. Field Studies Map MF-594.

    Google Scholar 

  • FRYDMAN S. — BEASLEY D.H. (1976): Centrifugal modelling of riverbank failure: Proc. Am. Soc. Civil Engrs., Jour. Geotechnical Eng. Div., v. 102, no. GT5, p. 395–409.

    Google Scholar 

  • GOODMAN R.E. (1976): Methods of geological engineering: West Publishing Co., 472 p.

  • GOODMAN R.E. — BLAKE W. (1965): An investigation of rock noise in landslides and cut slopes: Rock Mechanics and Engineering Geology, Supplementum II, p. 88–93.

  • GOODMAN R.E. — BLAKE W. (1966): Rock noise in landslides and slope failures: Highway Research Record No. 119, Highway Research Board of the Nat’l. Acad. Sciences-Nat’l. Res. Council, publication 1360, p. 50–60.

  • GOODMAN R.E. — DUBOIS J. (1972): [1966] Duplication of dilatancy in analysis of jointed rocks: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 98, no. SM4, p. 399–422.

    Google Scholar 

  • GOODMAN R.E. — TAYLOR R.L. — BREKKE T.L. (1968): A model for the mechanics of jointed rock: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 94, no. SM3, p. 637–659.

    Google Scholar 

  • GUBIN I. Ye. (1960): Zakonomernosti seysmicheskikh proyavleniy na territorii Tadzhikistana (Regimen of seismic manifestations on the territory of Tadzhikistan), Academy of Sciences USSR Press.

  • HADLEY J.B. (1964): Landslides and related phenomena accompanying the Hebgen Lake earthquake of August 17, 1959: U.S. Geol. Survey Prof. Paper 435, p. 107–138.

  • HANSEN W.R. (1965): Effects of the earthquake of March 27, 1964, at Anchorage Alaska: U.S. Geol. Survey Prof. Paper 542-A, 68 p.

  • HARDY H.R. (1959): Time-dependent deformation and failure of geologic materials: Third Symposium on Rock Mechanics, Golden, Colo. School of Mines Quart., v. 54, no. 3, p. 135–175.

    Google Scholar 

  • HAST N. (1958): The measurement of rock pressure in mines: Sveriges Geol. Undersokn., Arsbok, Ser. C., 52, no. 3, p. 1–183.

    Google Scholar 

  • HOEK E. — BRAY J.W. (1974): Rock slope engineering: The Institution of Mining and Metallurgy, London, 309 p.

    Google Scholar 

  • HOEK E. — LONDE P. (1974): Surface workings in rock: Proc. 3rd Int. Soc. for Rock Mech. Cong. v. 1, pt. A, p. 613–654.

    Google Scholar 

  • HOWARD A.D. (1965): Geomorphological systems — equilibrium and dynamics: Am. Jour. Sci. v. 263, p. 302–312.

    Article  Google Scholar 

  • HUTCHINSON J.N. — KOJAN, Eugene (1975): The Mayunmarca landslide of 25 April 1974, UNESCO Serial No. 3124, Paris, 23 p., photographs, maps.

  • IDRISS I.M. — SEED H.B. (1966): The response of earthbanks during earthquakes: Soil mechanics and bituminous materials research laboratory, Univ. of Calif., Berkeley, 22 p.

  • JAPAN SOCIETY OF LANDSLIDE ((1972): Landslides in Japan: The Japan Society of Landslide, National Conference of Landslide Control, 40 p.

  • KAMENOV B. — ILIEV Il. — TSVETKOV St. — AVRAMOVA E. — SIMEONOVA C. (1973): Influence of the geological structure on the occurrence of different types of landslides along the Bulgarian Black Sea Coast: Geologia Applicata e Idrogeologia, v. 8, pt. 2, p. 209–220.

    Google Scholar 

  • KENNEDY B.A. — NIERMEYER K.E. (1970): Slope monitoring systems used in the prediction of a major slope failure at the Chuguicamata Mine, Chile:in Planning Open-Pit Mines, VAN RENSBURG, P.W.J., ed., Symposium at Johannesburg, 1970, South African Institute of Mining and Metallurgy, p. 215–225.

  • KOBAYSHI, Kunio (1956): Periglacial morphology in Japan: Builetyn Peryglacjalny Nr. 4, p. 15–36 (Lodzkie towarzystwo naukowe societas scientarium lodziensis, Wydzial III, sectio III).

  • KOMARNITSKII N.I. (1968): Zones and planes of weakness in rocks and slope stability: F.P. Savarenskii Laboratory of Hydrogeological Problems, Acad. of Sciences of the USSR, Moscow (Translated from Russian by Consultants Bureau, N.Y.).

  • KOVACS W.D. — SEED H.B. — IDRISS I.M. (1971): Studies of seismic responses of clay banks: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 97, no. SM2, p. 441–455.

    Google Scholar 

  • KRSMANOVIC D. (1967): Initial and residual shear strength of hard rocks: Geotechnique, v. 17, p. 145–160.

    Article  Google Scholar 

  • KRSMANOVIC D. — LANGOF Z. (1964): Large scale laboratory tests of the shear strength of rock material; Rock Mechanics and Engineering Geology, Supplementum I, p. 20–30.

  • LADANYI B. — ARCHAMBAULT G. (1969): Simulation of shear behavior of a jointed rock mass: Proc. 11th Symp. on Rock Mech., Berkeley, 1969, p. 105–125.

  • LA ROCHELLE P. — CHAGNON J.Y. — LEFEBVRE G. (1970): Regional geology and landslides in the marine clay deposits of eastern Canada: Canadian Geotechnical Journal, v. 7, no. 2, p. 145–156.

    Article  Google Scholar 

  • LEE F.T. — NICHOLS T.C. — ABEL J.F. Jr. (1969): Some relations between stress, geologic structure, and underground excavation in a metamorphic rock mass west of Denver, Colorado: U.S. Geol. Survey Prof. Paper 650-C, p. C27–C132.

  • LEGGET R.F. (1973): Cities and geology: McGraw-Hill, Inc., 624 p.

  • LENSEN G.J. — SUGGATE R.P. (1968): Inangahua earthquake — preliminary account of the geology,in ADAMS, R.D., et al., Preliminary reports on the Inangahua earthquake, New Zealand, May 1968: New Zealand Dept. of Scientific and Industrial Research, Bull. 193, p. 17–36.

  • LUMB, Peter (1975): Slope failures in Hong Kong: Quart. Jour. Engineering Geology, v. 8, p. 31–65.

    Article  Google Scholar 

  • McGILL J.T. (1959): Preliminary map of landslides in the Pacific Palisades area, City of Los Angeles, California: U.S. Geol. Survey Misc. Geol. Inv. Map I-284, scale 1:4,800.

  • MENCL V. — PETER P. — JESENÁK J. — ŠKOPEK J. (1965): Three questions on the stability of slopes: Int. Conf. on Soil Mech. and Found. Eng., 6th, Proc., v. II, p. 512–516.

    Google Scholar 

  • MILLER D.J. (1960): Giant waves in Lituya Bay, Alaska: U.S. Geol. Survey Prof. Paper 354-C, 86 p.

  • MILLIES-LACROIX A. (1968): Les glissements de terrains, présentation d’une carte prévisionelle des mouvements de masse dans le Rif (Maroc septentrional): Mines et Géologie, no. 27, p. 45–54.

  • MÜLLER Leopold (1963): Die Standfestigkeit von Felsböschungen als spezifisch geomechanische Aufgabe: Rock Mech. and Eng. Geol., v. 1, no. 1, p. 50–71.

    Google Scholar 

  • MÜLLER Leopold (1968): New consideration on the Vaiont slide: Felsmechanik u. Ingenieurgeol. 6. p. 1–91.

    Google Scholar 

  • MÜLLER Leopold (1974): Rock mass behavior — determination and application in engineering practice: advances in rock mechanics: Proc. 3rd Int. Soc. for Rock Mech. Cong., Denver, v. 1, pt. A, p. 205–215.

    Google Scholar 

  • MULLINEAUX D.R. — CRANDELL D.R. (1962): Recent lahars from Mount St. Helens, Washington: Geol. Soc. America Bull., v. 73, p. 855–870.

    Article  Google Scholar 

  • NEMČOK Arnold (1972): Gravitational slope deformation in high mountains: 24th Int. Geol. Cong., Montreal, Canada, Sec. 13, Proc., p. 132–141.

  • NILSEN T.H. (1971): Preliminary photointerpretation map of landslide and other surficial deposits of the Mount Diablo area, Contra Costa and Alameda Counties, California: U.S. Geol. Survey Misc. Field Studies Map MF-310.

    Google Scholar 

  • NILSEN T.H. (1972): Preliminary photointerpretation map of landslides and other surficial deposits of parts of the Altamont and Carbona 15-minute quadrangles, Alameda County, California: U.S. Geol. Survey Misc. Field Studies Map MF-321.

    Google Scholar 

  • NILSEN T.H. — BRABB E.E. (1972): Preliminary photointerpretation and damage maps of landslide and other surficial deposits in northeastern San Jose, Santa Clara County, California: U.S. Geol. Survey Misc. Field Studies Map MF-361.

    Google Scholar 

  • NILSEN T.H. — BRABB E.E. (1973): Current slope-stability studies in the San Francisco Bay region: Jour. Research U.S. Geol. Survey, v. 1, no. 4, p. 431–437.

    Google Scholar 

  • OBERSTE-LEHN, Deane (1976): Slope stability of the Lomerias Muertas area, San Benito County, California, PhD. dissertation, Stanford Univ., Palo Alto, California. 186 p.

  • ONODERA T. — YOSHINAKA R. — KAZAMA H. (1974): slope failures caused by heavy rainfall in Japan: Proc. Int. Cong. (2nd) Int. Assoc. Eng. Geologists, Brazil, v. 2, p. V-11.1–V-11.10.

    Google Scholar 

  • OSTERWALD F.W. (1961): Deformation and stress distribution around coal mine workings in Sunnyside No. 1 Mine, Utah: U.S. Geol. Survey Prof. Paper 424-C, p. C349-C353.

    Google Scholar 

  • PAIN C.F. — BOWLER J.M. (1973): Denudation following the November 1970 earthquake at Madang, Papua New Guinea: Z. Geomorph. N.F., supp. Bd. 18, p. 92–104.

    Google Scholar 

  • PATTON F.D. (1966): Multiple modes of shear failure in rock: Proc. 1st Cong. Internat. Soc. for Rock Mechanics, Lisbon, v. 1, p. 509–513.

    Google Scholar 

  • RADBRUCH D.H. — CROWTHER K.C. (1973): Map showing areas of estimated relative amounts of landslides in California: U.S. Geol. Survey Map I-747.

  • RADBRUCH-HALL D.H. (1975): Large-scale gravitational creep of rock masses on slopes (abs.): Geol. Soc. America, Abstracts with programs, v. 7, no. 7, p. 1237.

    Google Scholar 

  • RADBRUCH-HALL D.H. (1976): Maps showing areal slope stability in part of the northern Coast Ranges, California: U.S. Geol. Survey Map I—982 (in press).

    Google Scholar 

  • RADBRUCH-HALL D.H. and others (1976): Landslide overview map of the conterminous United States: U.S. Geol. Survey Map MF—771.

  • RADBRUCH-HALL D.H. — VARNES D.J. — COLTON R.B. (1976): Gravitational spreading of steep-sided ridges (“Sackung”) in Colorado: U.S. Survey Jour. Research (in press).

  • RADBRUCH-HALL D.H. — VARNES D.J. — SAVAGE W.Z. (197_): Gravitational spreading of steep-sided ridges (“Sackung”) in western United States: Presented at 25th Int. Geol. Cong., Australia (in press).

  • RHODES D.C. (1968): Landsliding in the mountainous humid tropics: a statistical analysis of landmass denudation in New Guinea: M.A. Thesis, Dept. of Geography, University of Kansas, Lawrence, Kansas (Technical Report No. 4, Office of Naval Research, Geography Branch).

  • RICHTER C.F. (1968): Elementary seismology: W.H. Freeman and Co., San Francisco, 768 p.

    Google Scholar 

  • RUSSEL I.C. (1900): A preliminary paper on the geology of the Cascade Mountains in northern Washington: U.S. Geol. Survey 20th Ann. Report, 1898–99, Part II, p. 83–210.

  • RYBAŘ J. — NEMČOK A. (1968): Landslide investigations in Czechoslovakia: Proc. of 1st Session Int. Assoc. Eng. Geology, held during the 23rd Int. Geol. Congress, Prague, p. 183–198.

  • SAITO M. (1965): Forecasting the time of occurrence of a slope failure: Int. Conf. on Soil Mech. and Found. Eng., 6th, Proc., v. II, p. 537–541.

  • SAITO M. (1972): On forecasting slope failure: Soils and Foundations, v. 20, no. 2, p. 13–19 (in Japanese)

    Google Scholar 

  • SCHOLZ Christopher, (1970): The role of microfracturing in rock deformation: Proc. 2nd Cong. of the Int. Soc. for Rock Mech., Beograd, v. I, p. 323–327.

  • SEED H.B. (1967): Slope stability during earthquakes: Jour. Soil Mech. and Found. Div. Proc. Am. Soc. Civil Engrs., v. 93, no. SM4, p. 299–323.

    Google Scholar 

  • SEED H.B. — IDRISS I.M. — LEE K.L. — MAKDISI F.I. (1975): Dynamic analysis of the slide in the Lower San Fernando Dam during the earthquake of February 9, 1971: Jour. Geotechnical Engineering Div., Proc. Am. Soc. Civil Engrs., v. 101, no. GT 9, p. 889–911.

    Google Scholar 

  • SEED H.B. — WILSON S.D. (1967): The Turnagain Heights landslide, Anchorage, Alaska: Jour. Soil Mech. and Found. Div., Proc. Am. Soc. Civil Engrs., v. 93, no. SM 4, p. 325–353.

    Google Scholar 

  • SILGADO F., ENRIQUE (1951): The Ancash, Peru earthquake of November 10, 1946: Bull. Seismol. Soc. America, v. 41, no. 2, p. 83–100.

    Google Scholar 

  • SIMONETT D.S. (1967): Landslide distribution and earthquakes in the Bewani and Torricelli Mountains, New Guinea.in JENNINGS, J.N., and MABUTT, J.A. eds. Landform studies from Australia and New Guinea: Cambridge University Press, p. 64–84.

  • SKEMPTON A.W. (1964): Long-term stability of clay slopes: Geotechnique, v. 14, no. 2, p. 77–101.

    Article  Google Scholar 

  • STACEY T.R. (1975): The behavior of two- and three-dimensional model rock slopes: Quart. Jour. Engineering Geology, v. 8, p. 67–72.

    Article  Google Scholar 

  • TABOR Rowland W. (1971): Origin of ridge-top depressions by large-scale creep in the Olympic Mountains, Washington: Geol. Soc. America Bull., v. 82, p. 1811–1822.

    Article  Google Scholar 

  • TER-STEPANIAN G. (1974): Depth creep of slopes: Int. Assoc. Eng. Geology Bull. no. 9, p. 97–102.

  • TERZAGHI K. (1962): Stability of steep slopes on hard unweathered rock: Geotechnique, v. 12, p. 251–270.

    Article  Google Scholar 

  • TILLING R.I. — KOYANAGI N.Y. — HOLCOMB R.T. (1975): Rockfall seismicity-correlation with field observation, Makaopuhi Crater, Kilauea Volcano, Hawaii: U.S. Geol. Survey Jour. Research, v. 3, no. 3, p. 345–361.

    Google Scholar 

  • TILLING R.I. and others (1976): Earthquake and related catastrophic events, island of Hawaii, November 29, 1975: a preliminary report: U.S. Geol. Survey Circular (in press).

  • U.S. CORPS OF ENGINEERS (1973): Interim report on foundation treatment — Laurel Dam: foundation treatment in stress relieved valley: U.S. Army Engineer District, Nashville, Corps of Engineers, Nashville, Tennessee, 18 p.

  • TORRANCE J.K. (1975): On the role of chemistry in the development and behavior of the Sensitive marine clay of Canada and Scandinavia: Canadian Geotech. Jour., v. 17, p. 326–335.

    Article  Google Scholar 

  • U.S. GEOLOGICAL SURVEY (1975): Geological Survey Research. 1975, U.S. Geol. Survey Prof. Paper 975, p. 269.

  • WATSON R.A. — WRIGHT H.E. Jr. (1969): The Saidmarreh landslide, Iran, Geol. Soc. America Spec. Paper 123, p. 115–139.

    Google Scholar 

  • YAMAGUCHI S. (1972): Forecasting methods and its technical points at issue: Proc. First Internat. Symposium on Landslide Control, October 1972, The Japan Society of Landslide and National Conference of Landslide, p. 167–174 (in Japanese and English).

  • YEEND W.E. (1969): Quaternary geology of the Grand and Battlement Mesas area, Colorado: U.S. Geol. Survey Prof. Paper 617, 50 p.

  • YEEND W.E. (1973): Slow-sliding slumps, Grand Mesa, Colorado: The Mountain Geologist, v. 10, no. 1, p. 25–28.

    Google Scholar 

  • YOUD T.L. — HOOSE S.N. (1976): Liquefaction during 1906 San Francisco earthquake: Jour. of the Geotechnical Eng. Div. Proc. Am. Soc. Civil Engrs., vol. 102, no. GT 5, p. 425–439.

    Google Scholar 

  • ZISCHINSKY Ulf (1966): On the deformation of high slopes: 1st Cong. Int. Soc. of Rock Mech., Proc., v. 2, Lisbon, p. 179–185.

    Google Scholar 

  • ZISCHINSKY Ulf (1969): Über Sackungen: Rock Mechanics, v. 1, p. 30–52.

    Article  Google Scholar 

  • ZOLOTAREV G.S. (1974): Geological principles of slump and landslide development — foundations of the theory of their study and prediction: Vestnik Moskovskogo Universiteta, Geologiya, v. 29, no. 4, pp. 3–19 (published in English by Allerton Press, Inc.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radbruch-Hall, D.H., Varnes, D.J. Landslides — Cause and effect. Bulletin of the International Association of Engineering Geology 13, 205–216 (1976). https://doi.org/10.1007/BF02634797

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02634797

Keywords

Navigation