Skip to main content
Log in

Replacement of vertebrate serum with lipids and other factors in the culture of invertebrate cells, tissues, parasites, and pathogens

  • TCA Session-In-Depth Invertebrate Cell Culture
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Culture medium supplementation with vertebrate serum results in the selection of fibroblastoid insect cell lines and a general decline during continuous subculturing of both morphologic and functional differentiation of the surviving cells. Essential lipid mixtures can substitute for vertebrate serum in the culture of insect and some vertebrate cells, tissues, parasites, and pathogens. The provision of sterols and essential (with nonessential) polyunsaturated fatty acids as phospholipids in oxidation-protected peptoliposomes or proteoliposomes allows cells in culture to duplicate in vivo specific membranes more accurately. Such lipid-corrected membranes allow cultured cells to communicate with neighboring cells through the extracellular matrix, effectively transmit hormonal signals directly and via receptor control, and respond with various tissue-specific functions and differentiation states as directed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdallah, M. A.; Abdel-Hafez, S. K.; Al-Yaman, F. M.Trypanosoma acomys (Wenyon, 1909): continuous culturing with a mouse fibroblast cell-line (A9). J. Protozool. 37:113–117; 1990.

    PubMed  CAS  Google Scholar 

  2. Ahmad, S.; Pritsos, C. A.; Pardini, R. S. Antioxidant enzyme activities in subcellular fractions of larvae of the black swallowtail butterfly,Papilio polyxenes. Arch. Insect Biochem. Physiol. 15:101–109; 1990.

    Article  CAS  Google Scholar 

  3. Allen, D.; Quinn, P. Membrane phospholipid asymmetry in Semliki Forest virus grown in BHK cells. Biochim. Biophys. Acta. 987:199–204; 1989.

    Article  Google Scholar 

  4. Anonymous. Does tissue glutathione level indicate organ senescence? Nutrition Rev. 47:330–332; 1989.

  5. Anonymous. Guarding against cellular glutathione deficiency. Nutrition Rev. 48:346–348; 1990.

  6. Anonymous. Inhibition of lipid peroxidation by mono-unsaturated fatty acids. Nutrition Rev. 47:126–128; 1989.

  7. Aruoma, O. I.; Halliwell, B.; Hoey, B. M., et al. The antioxidant action of taurine, hypotaurine and their metabolic precursors. Biochem. J. 256:251–255; 1988.

    PubMed  CAS  Google Scholar 

  8. Aruoma, O. I.; Laughton, M. J.; Halliwell, B. Carnosine, homocarnosine and anserine: could they act as antioxidantsin vivo? Biochem. J. 264:863–869; 1989.

    PubMed  CAS  Google Scholar 

  9. Atkinson, A. E.; Earley, F. G. P.; Beadle, D. J., et al. Expression and characterization of the chick nicotinic acetylcholine receptor α-subunit in insect cells using a baculovirus vector. Eur. J. Biochem. 192:451–458; 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Babizhayev, M. A. Antioxidant activity ofl-carnosine, a natural histidine-containing dipeptide in crystalline lens. Biochim. Biophys. Acta. 1004:363–371; 1989.

    PubMed  CAS  Google Scholar 

  11. Bachrach, U.; Abu-Elheiga, L.; Assaraf, Y. G., et al. Polyamines in the cell cycle of the malarial parasitePlasmodium falciparum. In: Zappia, V.; Pegg, A. E., eds. Progress in polyamine research, novel biochemical, pharmacological, and clinical aspects. New York: Plenum Press; 1988:643–650.

    Google Scholar 

  12. Bankov, I.; Barrett, J. Sphingomyelin synthesis inFasciola hepatica. Int. J. Parasitol. 20:581–585; 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Barclay, L. R. C.; Locke, S. J.; MacNeil, J. M. Auto-oxidation in micelles. Synergism of vitamin C with lipid-soluble vitamin E and water solubleTrolox. Can. J. Chem. 63:366–374; 1985.

    Article  CAS  Google Scholar 

  14. Barnard, J. A.; Lyons, R. M.; Moses, H. L. The cell biology of transforming growth factor β. Biochim. Biophys. Acta 1032:79–87; 1990 (review).

    PubMed  CAS  Google Scholar 

  15. Beach, D. H.; Holz, G. G., Jr.; Singh, B. N., et al. Fatty acid and sterol metabolism ofTrichomonas vaginalis andTritrichomonas foetus. Mol. Biochem. Parasitol. 38:175–190; 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Bégin, M. E.; Das, U. N.; Ells, G. Cytotoxic effects of essential fatty acids (EFA) in mixed cultures of normal and malignant human cells. Prog. Lipid Res. 25:573–576; 1986.

    Article  Google Scholar 

  17. Bell, M. V.; Tocher, D. R. Molecular species composition of the major phospholipids in brain and retina from rainbow trout (Salmo gairdneri), occurrence of high levels of di-(n3) polyunsaturated fatty acid species. Biochem. J. 264:909–915; 1989.

    PubMed  CAS  Google Scholar 

  18. Benzakour, O.; Echalier, G.; Lawrence, D. A. Drosophila cell extracts contain a TGF-B-like activity. Biochem. Biophys. Res. Commun. 169:1178–1184; 1990.

    Article  PubMed  CAS  Google Scholar 

  19. Black, S.; Vandeweerd, V. Serum lipoproteins are required for multiplication ofTrypanosoma brucei brucei under axenic culture conditions. Mol. Biochem. Parasitol. 37:65–72; 1989.

    Article  PubMed  CAS  Google Scholar 

  20. Boldyrev, A. A.; Dupin, A. M.; Batrukova, M. A., et al. A comparative study of synthetic carnosine analogs as antioxidants. Comp. Biochem. Physiol. 94B:237–240; 1989.

    CAS  Google Scholar 

  21. Bondeson, J.; Sundler, R. Promotion of acid-induced membrane fusion by basic peptides. Amino acid and phospholipid specificities. Biochim. Biophys. Acta 1026:186–194; 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Bors, W.; Heller, W.; Michel, C., et al. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. In: Packer, L.; Glazer, A. N., eds. Oxygen radicals in biological systems. Part B, Oxygen radicals and antioxidants (Methods in Enzymology, vol. 186). San Diego: Academic Press, Inc.; 1990:343–355.

    Chapter  Google Scholar 

  23. Brenner, R. R. Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog. Lipid Res. 23:69–96; 1984 (review).

    Article  PubMed  CAS  Google Scholar 

  24. Brophy, P. M.; Barrett, J. Strategies for detoxification of aldehydic products of lipid peroxidation in helminths. Mol. Biochem. Parasitol. 42:205–212; 1990.

    Article  PubMed  CAS  Google Scholar 

  25. Burger, K. N. J.; Verkleij, A. J. Membrane fusion. Experientia 46:631–644; 1990 (review).

    Article  PubMed  CAS  Google Scholar 

  26. Burgoyne, R. D.; Morgan, A. The control of free arachidonic acid levels. Trends Biochem. Sci. 15:365–366; 1990 (review).

    Article  PubMed  CAS  Google Scholar 

  27. Calder, P. C.; Bond, J. A.; Harvey, D. J., et al. Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis. Biochem. J. 269:807–814; 1990.

    PubMed  CAS  Google Scholar 

  28. Carvalho, Z. G.; DeMatos, A. P. A.; Rodrigues-Pousada, C. Association of African swine fever virus with the cytoskeleton. Virus Res. 11:175–192; 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Chang, K.-P.; Chaudhuri, G. Molecular determinants ofLeishmania virulence. Annu. Rev. Microbiol. 44:499–529; 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Conforti, G.; Zanetti, A.; Pasquali-Ronchetti, I., et al. Modulation of vitronectin receptor binding by membrane lipid composition. J. Biol. Chem. 265:4011–4019; 1990.

    PubMed  CAS  Google Scholar 

  31. Cornwell, D. G.; Zhang, H. Fatty acid metabolism and cell proliferation. In: Sevanian, A., ed. Lipid peroxidation in biological systems. Champaign, IL: American Oil Chemists Society; 1988:163–195.

    Google Scholar 

  32. Cripps, C.; Blomquist, G. J.; deRenobales, M. De novo biosynthesis of linoleic acid in insects. Biochim. Biophys. Acta. 876:572–580; 1986.

    CAS  Google Scholar 

  33. Cullis, P. R.; Hope, M. J.; Tilcock, C. P. S. Lipid polymorphism and the roles of lipids in membranes. Chem. Phys. Lipids. 40:127–144; 1986.

    Article  PubMed  CAS  Google Scholar 

  34. Dabrowski, U.; Dabrowski, J.; Helling, F., et al. Novel phosphorus-containing glycosphingolipids from the blowflyCalliphora vicina Meigen. J. Biol. Chem. 265:9737–9743; 1990.

    PubMed  CAS  Google Scholar 

  35. Dadd, R. H. Essential fatty acids: insects and vertebrates compared. In: Mittler, T. E.; Dadd, R. H., eds. Metabolic aspects of lipid nutrition in insects. Boulder, CO: Westview Press; 1983:107–147 (review).

    Google Scholar 

  36. Dales, S. Reciprocity in the interactions between the poxviruses and their host cells. Annu. Rev. Microbiol. 44:173–192; 1990.

    Article  PubMed  CAS  Google Scholar 

  37. Darfler, F. J. Preparation and use of lipid microemulsions as nutritional supplements for culturing mammalian cells. In Vitro Cell. Dev. Biol. 26:779–783; 1990.

    Article  PubMed  CAS  Google Scholar 

  38. Dearborn, D. G.; Smith, S.; Korn, E. D. Lipophosphonoglycan of the plasma membrane ofAcanthamoeba castellanii. J. Biol. Chem. 251:2976–2982; 1976.

    PubMed  CAS  Google Scholar 

  39. deKroon, A. I. P. M.; Soekarjo, M. W.; deGier, J., et al. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based upon tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers. Biochemistry 29:8229–8240; 1990.

    Article  CAS  Google Scholar 

  40. deKruijff, B. Polymorphic regulation of membrane lipid composition. Nature 329:587–588; 1987 (review).

    Article  CAS  Google Scholar 

  41. de Pablo, F.; Roth, J. Endocrinization of the early embryo: an emerging role for hormones and hormone-like factors. Trends Biochem. Sci. 15:339–342; 1990 (review).

    PubMed  Google Scholar 

  42. Doba, T.; Burton, W.; Ingold, K. U. Antioxidant and co-oxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water soluble vitamin E analogue [Trolox], upon the peroxidation of aqueous multilamellar phospholipid liposomes. Biochim. Biophys. Acta. 835:298–303; 1985.

    PubMed  CAS  Google Scholar 

  43. Duve, H.; Thorpe, A. The isolation and characterization of vertebrate-type peptides in insects. In: Thorndyke, M. C.; Goldsworthy, G. J., eds. Neurohormones in invertebrates. Cambridge: Cambridge University Press; 1988:115–139 (review).

    Google Scholar 

  44. Eaton, B. T.; Hyatt, A. D. Association of bluetongue virus with the cytoskeleton. In: Harris, J. R., ed. Subcellular biochemistry. vol. 15, Virally infected cells. New York: Plenum Press; 1989:233–273.

    Google Scholar 

  45. Edmonds, P. D.; Sancier, K. M. Evidence for free radical production by ultrasonic cavitation in biological media. Ultrasound Med. Biol. 9:635–639; 1983.

    Article  PubMed  CAS  Google Scholar 

  46. Ellis, L. C. Free radicals in tissue culture: Part II, Sources of free radicals. Art to science. Logan, UT: HyClone Laboratories, Inc.; 9:1–6; 1990.

    Google Scholar 

  47. Erhardt, A.; Golly, F.; Binaglia, L., et al. The asymmetrical distribution and biosynthesis of molecular species of phospholipids in chick brain microsomes. In: Freysz, L.; Dreyfus, H.; Massarelli, R., et al., eds. Enzymes of lipid metabolism II. New York: Plenum Publishing Corp.; 1986:415–420.

    Google Scholar 

  48. Escriba, P. V.; Ferrer-Montiel, A.; Ferragut, J. A., et al. Role of membrane lipids in the interaction of Daunomycin with plasma membranes from tumor cells: implications in drug-resistance phenomena. Biochemistry 29:7275–7282; 1990.

    Article  PubMed  CAS  Google Scholar 

  49. Farooqui, M. Y. H.; Day, W. W.; Zamorano, D. M. Glutathione and lipid peroxidation in the aging rat. Comp. Biochem. Physiol. 88B:177–180; 1987.

    CAS  Google Scholar 

  50. Fessler, J. H.; Fessler, L. I.Drosophila extracellular matrix. Annu. Rev. Cell Biol. 5:309–339; 1989.

    Article  PubMed  CAS  Google Scholar 

  51. Fournier, N. C.; Richard, M. A. Role of fatty acid-binding protein in cardiac fatty acid oxidation. Mol. Cell. Biochem. 98:149–159; 1990.

    Article  PubMed  CAS  Google Scholar 

  52. Frei, B.; Kim, M. C.; Ames, B. N. Ubiquinol-10 is an effective lipid soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87:4879–4883; 1990.

    Article  PubMed  CAS  Google Scholar 

  53. Frizzell, L. A. Biological effects of acoustic cavitation. In: Suslick, K. S., ed. Ultrasound, its chemical, physical and biological effects. New York: VCH Publishers, Inc.; 1988:287–303.

    Google Scholar 

  54. Furlong, S. T. Sterols of parasitic protozoa and helminths. Exp. Parasitol. 68:482–485; 1989 (review).

    Article  PubMed  CAS  Google Scholar 

  55. Gillin, F. D.; Gault, M. J.; Hofman, A. F., et al. Biliary lipids support serum-free growth ofGiardia lamblia. Infect. Immun. 53:641–645; 1986.

    PubMed  CAS  Google Scholar 

  56. Goodwin, R. H. Growth of insect cells in serum-free media. In: Techniques in the life sciences, cell biology, colln. No. 1, Techniques in setting up and maintenance of tissue and cell cultures. County Claire, Ireland: Elsevier Scientific Publishers, Ireland Ltd.; 1985: Pamph. C109.

    Google Scholar 

  57. Goodwin, R. H. The effect of lipids on the subculture of differentiated cells from primary cultures of grasshopper embryonic tissues. In Vitro Cell. Dev. Biol. 24:388–400; 1988.

    Article  CAS  Google Scholar 

  58. Goodwin, R. H. The culture of differentiated cells from insect embryonic tissues: The effect of peptoliposomal versus serum supplementation. In Vitro Cell. Dev. Biol. 24(3:Part 2): 13A; 1988.

  59. Goodwin, R. H. Construction of peptoliposomes for the incorporation of nutrient lipid supplements in insect cell culture media. J. Tissue Cult. Methods. 12:17–20; 1989.

    Article  Google Scholar 

  60. Goodwin, R. H.; Adams, J. R. Nutrient factors influencing viral replication in serum-free insect cell line culture. In: Kurstak, E.; Maramorosch, K.; Dubendorfer, A., eds. Invertebrate systems in vitro. Amsterdam: Elsevier/North Holland Biomedical Press; 1980:493–509.

    Google Scholar 

  61. Goodwin, R. H.; Adams, J. R.; Shapiro, M. Replication of the entomopoxvirus fromAmsacta moorei in serum-free cultures of a gypsy moth cell line. J. Invertebr. Pathol. 56:190–205; 1990.

    Article  Google Scholar 

  62. Grand, R. J. A. Acylation of viral and eukaryotic proteins. Biochem. J. 258:625–638; 1989 (review).

    PubMed  CAS  Google Scholar 

  63. Grellier, P.; Rigomier, D.; Michon, P., et al. Visualisation d’un flux unidirectionnel lipidique des lipoprotéines (HDL) vers les parasites intraérythrocytaires,P. falciparum cultivésin vitro. J. Protozool. 37:55A; 1990.

    Google Scholar 

  64. Gruenberg, J.; Howell, K. E. Membrane traffic in endocytosis: insights from cell-free assays. Annu. Rev. Cell Biol. 5:453–481; 1989.

    Article  PubMed  CAS  Google Scholar 

  65. Guinea, R.; Carrasco, L. Phospholipid biosynthesis and poliovirus genome replication, two coupled phenomena. EMBO J. 9:2011–2016; 1990.

    PubMed  CAS  Google Scholar 

  66. Hackett, K. J.; Ginsberg, A. S.; Rottem, S., et al. A defined medium for a fastidious spiroplasma. Science 237:525–527; 1987.

    Article  PubMed  CAS  Google Scholar 

  67. Hackstadt, T. The role of lipopolysaccharides in the virulence ofCoxiella burnetti. Ann. NY Acad. Sci. 590:27–32; 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Halliwell, B.; Gutteridge, J. M. C. The antioxidants of human extracellular fluids. Arch. Biochem. Biophys. 274:532–538; 1990.

    Google Scholar 

  69. Harpin, M.-L.; Younes-Chennoufi, A. B.; Boutry, J.-M., et al. Fetal calf serum gangliosides: quantitation and immunodetection of minor ones with R24 and A2B5 monoclonal antibodies. In Vitro Cell. Dev. Biol. 26:217–219; 1990.

    PubMed  CAS  Google Scholar 

  70. Hazelton, G. A.; Lang, C. A. Glutathione levels during the mosquito life span with emphasis on senescence. Proc. Soc. Exp. Biol. Med. 176:249–256; 1984.

    PubMed  CAS  Google Scholar 

  71. Hide, G. Identification of an EGF receptor homologue in trypanosomes. In: Agabian, N.; Cerami, A., eds. Parasites, molecular biology, drug and vaccine design; UCLA symposia on molecular and cellular biology, new series, vol. 130. New York: Wiley-Liss; 1990:213–224.

    Google Scholar 

  72. Hiroi, K.; Miyamoto, H. Changes of intermediate filaments during virus infection. Cell Struct. Funct. 14:885; 1989.

    Google Scholar 

  73. Holler, T. P.; Hopkins, P. B. Ovothiols as free-radical scavengers and the mechanism of ovothiol-promoted NAD(P)H-O2 oxidoreductase activity. Biochemistry 29:1953–1961; 1990.

    Article  PubMed  CAS  Google Scholar 

  74. Hori, T.; Yamanaka, Y.; Hayakawa, M., et al. Growth inhibition of human fibroblasts by epidermal growth factor in the presence of arachidonic acid. Biochem. Biophys. Res. Commun. 169:959–965; 1990.

    Article  PubMed  CAS  Google Scholar 

  75. Horkovics-Kovats, S.; Traub, P. Specific interaction of the intermediate filament protein vimentin and its isolated N-terminus with negatively charged phospholipids as determined by vesicle aggregation, fusion, and leakage measurements. Biochemistry 29:8652–8657; 1990.

    Article  PubMed  CAS  Google Scholar 

  76. Hosick, H. L. Uptake and utilization of free fatty acids supplied by liposomes to mammary tumor cells in culture. Exp. Cell Res. 122:127–136; 1979.

    Article  PubMed  CAS  Google Scholar 

  77. Howard, R. W.; Stanley-Samuelson, D. W. Phospholipid fatty acid composition and arachidonic acid metabolism in selected tissues of adultTenebrio molitor (Coleoptera: Tenebrionidae). Ann. Entomol. Soc. Am. 83:975–981; 1990.

    CAS  Google Scholar 

  78. Huang, L.-S.; Grunwald, C. Lipid and fatty acid changes during germination of alfalfa seeds. Phytochemistry 29:1441–1445; 1990.

    Article  CAS  Google Scholar 

  79. Hullin, F.; Salem, N., Jr. Topological distribution of phosphatidylethanolamine species in the red blood cell membrane. In: Léger, C. L.; Béréziat, G., eds. Biomembranes and nutrition. Paris: Editions INSERM; Colloque INSERM, vol. 195; 1989:77–86.

    Google Scholar 

  80. Hursh, D. A.; Andrews, M. E.; Raff, A. A sea urchin gene encodes a polypeptide homologous to epidermal growth factor. Science 237:1487–1490; 1987.

    Article  PubMed  CAS  Google Scholar 

  81. Huxtable, R. J. Taurine in the central nervous system and the mammalian actions of taurine. Prog. Neurobiol. 32:471–533; 1989 (review).

    Article  PubMed  CAS  Google Scholar 

  82. Imagawa, W.; Bandyopadhyay, G. K.; Wallace, D., et al. Phospholipids containing polyunsaturated fatty acyl groups are mitogenic for normal mouse mammary epithelial cells in serum-free primary cell culture. Proc. Natl. Acad. Sci. USA 86:4122–4126; 1989.

    Article  PubMed  CAS  Google Scholar 

  83. Inlow, D.; Shauger, A.; Maiorella, B. Insect cell culture and baculovirus propagation in protein-free medium. J. Tissue Cult. Methods 12:13–16; 1989.

    Article  Google Scholar 

  84. Iscove, N. N.; Guilbert, L. J.; Weyman, C. Complete replacement of serum in primary cultures of erythropoietin-dependent red cell precursors (CFU-E) by albumin, transferrin, iron, unsaturated fatty acid, lecithin, and cholesterol. Exp. Cell Res: 126:121–126: 1980.

    Article  PubMed  CAS  Google Scholar 

  85. Iscove, N. N.; Melchers, F. Complete replacement of serum by albumin, transferrin and soybean lipid in cultures of lipopolysaccharide-reactive B-lymphocytes. J. Exp. Med. 147:923–933; 1978.

    Article  PubMed  CAS  Google Scholar 

  86. Jarvis, D. L.; Fleming, J.-A. G. W.; Kovacs, G. R., et al. Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably transformed lepidopteran cells. Bio/Technology 8:950–955; 1990.

    Article  PubMed  CAS  Google Scholar 

  87. Jessup, W.; Rankin, S. M.; DeWhalley, C. V., et al. α-Tocopherol consumption during low-density-lipoprotein oxidation. Biochem. J. 265:399–405; 1990.

    PubMed  CAS  Google Scholar 

  88. Kaminsky, R.; Beaudoin, E.; Cunningham, I. Studies on the development of metacyclicTrypanosoma brucei sspp. cultivated at 27° C with insect cell lines. J. Protozool. 34:372–377; 1987.

    PubMed  CAS  Google Scholar 

  89. Kasurinen, J.; van Paridon, P. A.; Wirtz, K. W. A., et al. Affinity of phosphatidylcholine molecular species for the bovine phosphatidylcholine and phosphatidylinositol transfer proteins. Properties of the sn-1 and sn-2 acyl binding sites. Biochemistry 29:8548–8554; 1990.

    Article  PubMed  CAS  Google Scholar 

  90. Kiguchi, K.; Henning-Chubb, C. B.; Huberman, E. Glycosphingolipid patterns of peripheral blood lymphocytes, monocytes, and granulocytes are cell specific. J. Biochem. 107:8–14; 1990.

    PubMed  CAS  Google Scholar 

  91. Klymkowsky, M. W.; Bachant, J. B.; Domingo, A. Functions of intermediate filaments. Cell Motil. Cytoskeleton 14:309–331; 1989 (review).

    Article  PubMed  CAS  Google Scholar 

  92. Kubo, H.; Irie, A.; Inagaki, F., et al. Gangliosides from the eggs of the sea urchin,Anthocidaris crassispina. J. Biochem. 108:185–192; 1990.

    PubMed  CAS  Google Scholar 

  93. Kurrle, A.; Rieber, P.; Sackmann, E. Reconstitution of transferrin receptor in mixed lipid vesicles. An example of the role of elastic and electrostatic forces for protein/lipid assembly. Biochemistry 29:8274–8282; 1990.

    Article  PubMed  CAS  Google Scholar 

  94. Larsen, T.; Sorensen, M. B.; Olsen, R., et al. Effect of scavengers of active oxygen species and pre-treatment with acetyl-salicylic acid on the injury to cultured endothelial cells by thrombin-stimulated platelets. In Vitro Cell. Dev. Biol. 25:276–282; 1989.

    Article  PubMed  CAS  Google Scholar 

  95. Lazár, M.; Rychlý, J.; Klimo, V., et al. Free radicals in chemistry and biology. Boca Raton, FL: CRC Press, Inc.; 1989.

    Google Scholar 

  96. Leedle, R. A.; Aust, S. D. The effect of glutathione on the vitamin E requirement for inhibition of liver microsomal lipid peroxidation. Lipids 25:241–245; 1990.

    Article  PubMed  CAS  Google Scholar 

  97. Léger, C. L.; Daveloose, D.; Christon, R., et al. Evidence for a structurally specific role of essential polyunsaturated fatty acids depending on their peculiar double-bond distribution in biomembranes. Biochemistry 29:7269–7275; 1990.

    Article  PubMed  Google Scholar 

  98. Lindblom, G.; Rilfors, L. Cubic phases and isotropic structures formed by membrane lipids—possible biological relevance. Biochim. Biophys. Acta 988:221–256; 1989.

    CAS  Google Scholar 

  99. Linstead, D. New defined and semi-defined media for cultivation of the flagellate,Trichomonas vaginalis. Parasitology 83:125–137; 1981.

    PubMed  CAS  Google Scholar 

  100. Lisanti, M. P.; Rodriguez-Boulan, E.; Saltiel, A. R. Emerging functional roles for the glycosyl-phosphatidylinositol membrane protein anchor. J. Membr. Biol. 117:1–10; 1990 (review).

    Article  PubMed  CAS  Google Scholar 

  101. Liu, L. X.; Weller, P. F.Brugia malayi: microfilarial polyunsaturated fatty acid composition and synthesis. Exp. Parasitol. 69:198–203; 1989.

    Article  PubMed  CAS  Google Scholar 

  102. Loughrey, H. C.; Wong, K. F.; Choi, L. S., et al. Protein-liposome conjugates with defined size distributions. Biochim. Biophys. Acta 1028:73–81; 1990.

    Article  PubMed  CAS  Google Scholar 

  103. Lucy, J. A. Do hydrophobic sequences cleaved from cellular polypeptides induce membrane fusion reactions in vivo? FEBS Lett. 166:223–231; 1984.

    Article  PubMed  CAS  Google Scholar 

  104. Lynn, D. E.; Hung, A. C. F. Development of a continuous cell line from the insect egg parasitoid,Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). In Vitro Cell. Dev. Biol. 22:440–448; 1986.

    Google Scholar 

  105. Lynn, D. E.; Hung, A. C. F. Development of continuous cell lines from the egg parasitoidsTrichogramma confusum andT. exiguum. Arch. Insect Biochem. Physiol. In Press; 1991.

  106. Machlin, L. J.; Bendich, A. Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1:441–445; 1987.

    PubMed  CAS  Google Scholar 

  107. Maiorella, B.; Inlaw, D.; Shauger, A., et al. Large-scale insect cell-culture for recombinant protein production. Bio/Technology 6:1406–1410; 1988.

    Article  CAS  Google Scholar 

  108. Makita, A.; Taniguchi, N. Glycosphingolipids. In: Wiegandt, H., ed. Glycolipids (New comprehensive biochemistry, vol. 10). Amsterdam: Elsevier; 1985:1–99 (review).

    Google Scholar 

  109. Malewicz, B.; Kumar, V. V.; Johnson, R. G., et al. Lipids in gap junction assembly and function. Lipids 25:419–427; 1990.

    Article  PubMed  CAS  Google Scholar 

  110. Martensson, J.; Steinher, R.; Jain, A., et al. Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithelial-cell damage. Proc. Natl. Acad. Sci. USA 86:8727–8731; 1989.

    Article  PubMed  CAS  Google Scholar 

  111. Masterson, W. J.; Raper, J.; Doering, T. L., et al. Fatty acid remodeling: a novel reaction sequence in the biosynthesis of trypanosome glycosyl phosphatidylinositol membrane anchors. Cell 62:73–80; 1990.

    Article  PubMed  CAS  Google Scholar 

  112. McConville, M. J.; Homans, S. W.; Thomas-Oates, J. E., et al. Structures of the glycoinositolphospholipids fromLeishmania major, a family of novel galactofuranose-containing glycolipids. J. Biol. Chem. 265:7385–7394; 1990.

    PubMed  CAS  Google Scholar 

  113. McElhaney, R. N. The influence of membrane lipid composition and physical properties of membrane structure and function inAcholeplasma laidlawii. Crit. Rev. Microbiol. 17:1–32; 1989.

    PubMed  CAS  Google Scholar 

  114. McLaughlin, S. The electrostatic properties of membranes. Annu. Rev. Biophys. Biophys. Chem. 18:113–136; 1989.

    Article  PubMed  CAS  Google Scholar 

  115. McIlhinney, R. A. J. The fats of life: the importance and function of protein acylation. Trends Biochem. Sci. 15:387–391; 1990 (review).

    Article  PubMed  CAS  Google Scholar 

  116. Meis, J. F. G. M.; Verhave, J. P. Exoerythrocytic development of malarial parasites. In: Baker, J. R.; Muller, R., eds. Advances in parasitology, vol. 27. London: Academic Press; 1988:1–61.

    Google Scholar 

  117. Meister, A. Metabolism and function of glutathione. In: Dolphin, D.; Avramovic, O.; Poulson, R., eds. Glutathione, chemical biochemical and medical aspects, part A. New York: John Wiley & Sons; 1989:367–474 (review).

    Google Scholar 

  118. Mellors, A.; Samad, A. The acquisition of lipids by African trypanosomes. Parasitol. Today 5:239–244; 1989 (review).

    Article  PubMed  CAS  Google Scholar 

  119. Mené, P.; Simonson, M. S.; Dunn, M. J. Phospholipids in signal transduction of mesangial cells. Am. J. Physiol 256(3/2):F375-F386; 1989 (review).

    PubMed  Google Scholar 

  120. Merrill, J. A. H.; Jones, D. D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim. Biophys. Acta 1044:1–12; 1990 (review).

    PubMed  CAS  Google Scholar 

  121. Meyer, R.; Malewicz, B.; Baumann, W. J., et al. Increased gap junction assembly between cultured cells upon cholesterol supplementation. J. Cell Sci. 96:231–238; 1990.

    PubMed  CAS  Google Scholar 

  122. Minematsu, T.; Minori, T.; Tanaka, M., et al. The effect of fatty acids on the development direction ofStrongyloides ratti first-stage larvae. J. Helminthol. 63:102–106; 1989.

    Article  PubMed  CAS  Google Scholar 

  123. Mitsuhashi, J. Nutritional requirements of insect cellsin vitro. In: Mitsuhashi, J., ed. Invertebrate cell system applications, vol. 1. Boca Raton, FL: CRC Press; 1989:3–20 (review).

    Google Scholar 

  124. Mitsuhashi, J.; Goodwin, R. H. The serum-free culture of insect cellsin vitro. In: Mitsuhashi, J., ed. Invertebrate cell system applications, vol. 1. Boca Raton, FL: CRC Press; 1989:31–43 (review).

    Google Scholar 

  125. Moll, G. N.; Vial, H. J.; vanderWiele, F., et al. Selective elimination of malaria infected erythrocytes by a modified phospholipase A2 in vitro. Biochim. Biophys. Acta. 1024:189–192; 1990.

    Article  PubMed  CAS  Google Scholar 

  126. Momchilova, A. B.; Petkova, D. H.; Koumanov, K. S. Phospholipid composition modifications influence phospholipase A2 activity in rat liver plasma membranes. Int. J. Biochem. 18:945–952; 1986.

    Article  PubMed  CAS  Google Scholar 

  127. Motoyama, T.; Miki, M.; Mino, M., et al. Synergistic inhibition of oxidation in dispersed phosphatidylcholine liposomes by a combination of vitamin E and cysteine. Arch. Biochem. Biophys. 270:655–661; 1989.

    Article  PubMed  CAS  Google Scholar 

  128. Mukai, K.; Kikuchi, S.; Urano, S. Stopped-flow kinetic study of the regeneration reaction of tocopheroxyl radical by reduced ubiquinone-10 in solution. Biochim. Biophys. Acta 1035:77–82; 1990.

    PubMed  CAS  Google Scholar 

  129. Munderloh, U. G.; Kurtti, T. J. Formulation of medium for tick cell culture. Exp. & Appl. Acarol. 7:219–229; 1989.

    Article  CAS  Google Scholar 

  130. Murhammer, D. W.; Goochee, C. F. Scaleup of insect cell cultures: protective effects of Pluronic F-68. Bio/Technology 6:1411–1418; 1988.

    Article  CAS  Google Scholar 

  131. Murrell, G. A. C.; Francis, M. J. O.; Bromley, L. Modulation of fibroblast proliferation by oxygen free radicals. Biochem. J. 265:659–665; 1990.

    PubMed  CAS  Google Scholar 

  132. Muskavitch, M. A. T.; Hoffmann, F. M. Homologs of vertebrate growth factors inDrosophila melanogaster and other invertebrates. In: Nilsen-Hamilton, M., ed. Growth factors and development (Current topics in developmental biology, vol. 24). San Diego, CA: Academic Press; 1990:289–328 (review).

    Google Scholar 

  133. Nakamura, M. One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases. J. Biochem. 108:245–249; 1990.

    PubMed  CAS  Google Scholar 

  134. Newman, M. J. Inhibition of carcinoma and melanoma cell growth type 1 transforming growth factor β is dependent on the presence of polyunsaturated fatty acids. Proc. Natl. Acad. Sci. USA 87:5543–5547; 1990.

    Article  PubMed  CAS  Google Scholar 

  135. Ng, M. L.; Hong, S. S. The role of C6/36 cell cytoskeleton in the replication of kunjin virus. In: Kuroda, Y.; Kurstak, E.; Maramorosch, K., eds. Invertebrate and fish tissue culture. Proceedings of the seventh international conference on invertebrate and fish tissue culture. Tokyo: Japan Scientific Societies Press; 1988:144–151.

    Google Scholar 

  136. Nicolas, C.; Demarne, Y.; Lecourtier, M.-J., et al. Dependence between 5’-nucleotidase activity and phosphatidylcholine content in pig adipocyte plasma membrane. Absence of relationship with membrane physical state. Comp. Biochem. Physiol. 96B:195–199; 1990.

    CAS  Google Scholar 

  137. Niki, E.; Kawakami, A.; Yamamoto, Y., et al. Oxidation of lipids. VIII. Synergistic inhibition of oxidation of phosphatidylcholine liposome in aqueous dispersion by vitamin E and vitamin C. Bull. Chem. Soc. Jpn. 58:1971–1975; 1985.

    Article  CAS  Google Scholar 

  138. Niki, E.; Tsuchiya, J.; Tanimura, R., et al. Regeneration of vitamin E from α-chromanoxyl radical by glutathione and vitamin C. Chemistry Letters (Chem. Soc. Japan). 1982:789–792; 1982.

    Google Scholar 

  139. Niki, E.; Yamamoto, Y.; Kamiya, Y. Inhibition of peroxidations of liposomal and biomembranes by water-soluble antioxidants. In: Sevanian, A., ed. Lipid peroxidation in biological systems. Champaign, IL: American Oil Chemists Society; 1988:32–50 (review).

    Google Scholar 

  140. Ockner, R. K. Historic overview of studies on fatty acid-binding proteins. Mol. Cell. Biochem. 98:3–9; 1990 (review).

    Article  PubMed  CAS  Google Scholar 

  141. Oldenborg, V.; van Vugt, F.; van Golde, L. M. G. Composition and metabolism of phospholipids ofFasciola hepatica, the common liver fluke. Biochim. Biophys. Acta 398:101–110; 1975.

    PubMed  CAS  Google Scholar 

  142. Padgett, R. W.; St. Johnston, R. D.; Gelbart, W. M. A transcript from a Drosophila pattern gene predicts a protein homologous to the transforming growth factor-beta family. Nature 325:81–84; 1987.

    Article  PubMed  CAS  Google Scholar 

  143. Panganiban, G. E. F.; Rashka, K. E.; Neitzel, M. D., et al. Biochemical characterization of theDrosophila dpp protein, a member of the transforming growth factor β family of growth factors. Mol. Cell. Biol. 10:2669–2677; 1990.

    PubMed  CAS  Google Scholar 

  144. Parente, R. A.; Nadasdi, L.; Subbarao, N. K., et al. Association of a pH-sensitive peptide with membrane vesicles: role of amino acid sequence. Biochemistry 29:8713–8719; 1990.

    Article  PubMed  CAS  Google Scholar 

  145. Pelletier, X.; Freysz, L.; Leray, C. Topological distribution of choline phospholipid fatty acids in trout intestinal brush-border membrane. Biochim. Biophys. Acta 942:125–130; 1988.

    Article  PubMed  CAS  Google Scholar 

  146. Pelletier, X.; Mersel, M.; Freysz, L., et al. Topological distribution of aminophospholipids and fatty acids in trout intestinal brush-border membrane. Biochim. Biophys. Acta 902:223–238; 1987.

    Article  PubMed  CAS  Google Scholar 

  147. Platt, N.; Reynolds, S. E. Invertebrate neuropeptides. In: Lunt, G. G.; Olsen, R. W., eds. Comparative invertebrate neurochemistry. Ithaca, NY: Cornell University Press; 1988:175–226 (review).

    Google Scholar 

  148. Potter, B. J.; Sorrentino, D.; Berk, P. D. Mechanisms of cellular uptake of free fatty acids. Annu. Rev. Nutr. 9:253–270; 1989.

    Article  PubMed  CAS  Google Scholar 

  149. Quinn, P. J.; Joo, F.; Vigh, L. The role of unsaturated lipids in membrane structure and stability. Prog. Biophys. Mol. Biol. 53:71–103; 1989.

    Article  PubMed  CAS  Google Scholar 

  150. Rigomier, D.; Edorh, G.; Schrevel, J. Les glycosphingolipides et le développement dePlasmodium falciparum. J. Protozool. 37:58A; 1990.

    Google Scholar 

  151. Ritter, K. S.Steinernema feltiae (=Neoaplectana carpocapsae): effect of sterols and hypolipidemic agents on development. Exp. Parasitol. 67:257–267; 1988.

    Article  PubMed  CAS  Google Scholar 

  152. Ritter, K. S.; Nes, W. R. The effects of the structure of sterols on the development ofHeliothis zea. J. Insect Physiol. 27:419–424; 1981.

    Article  CAS  Google Scholar 

  153. Robinson, B. S.; Johnson, D. W.; Poulos, A. Unique molecular species of phosphatidylcholine containing very-long-chain (C24-C38) polyenoic fatty acids in rat brain. Biochem. J. 265:763–767; 1990.

    PubMed  CAS  Google Scholar 

  154. Roos, D. S.; Duchala, C. S.; Stephensen, C. B., et al. Control of virus-induced cell fusion by host cell lipid composition. Virology. 175:345–357; 1990. (see esp.: “Membranes, viral pathogenicity, and host range”, pp. 355–356).

    Article  PubMed  CAS  Google Scholar 

  155. Rosen, O. M. After insulin binds. Science 237:1452–1458; 1987 (review).

    Article  PubMed  CAS  Google Scholar 

  156. Rosenthal, M. D. Fatty acid metabolism of isolated mammalian cells. Prog. Lipid Res. 26:87–124; 1987 (review).

    Article  PubMed  CAS  Google Scholar 

  157. Rothberg, K. G.; Ying, Y.; Kolhouse, J. F., et al. The glycophospholipid-linked folate receptor internalizes folate without entering the clathrin-coated pit endocytic pathway. J. Cell Biol. 110:637–649; 1990.

    Article  PubMed  CAS  Google Scholar 

  158. Ruck, A.; Davidson, B. C.; Cantrill, R. C. Degree of unsaturation of fatty acid alters monocyte viabilityin vitro. Prog. Lipid Res. 25:375–377; 1986.

    Article  CAS  Google Scholar 

  159. Ruoslahti, E. Proteoglycans in cell regulation. J. Biol. Chem. 264:13369–13372; 1989 (review).

    PubMed  CAS  Google Scholar 

  160. Saito, M. Bioactive sialoglycosphingolipids (Gangliosides): potent differentiation-inducers for human myelogenous leukemia cells. Dev. Growth & Differ. 31:509–522; 1989 (review).

    Article  CAS  Google Scholar 

  161. Salem, N., Jr. Omega-3 fatty acids: molecular and biochemical aspects. In: Spiller, G. A.; Scala, J., eds. New protective roles for selected nutrients. New York: Alan R. Liss, Inc.; 1989:109–228 (review).

    Google Scholar 

  162. Salem, N., Jr.; Shingu, T.; Kim, H.-Y., et al. Specialization in membrane structure and metabolism with respect to polyunsaturated lipids. In: Karnovsky, M.; Leaf, A.; Bolis, L. C., eds. Aberrations in membrane structure and function. New York: Alan R. Liss, Inc.; 1988:319–333.

    Google Scholar 

  163. Sandermann, H., Jr. Regulation of membrane enzymes by lipids. Biochim. Biophys. Acta 515:209–237; 1978 (review).

    PubMed  CAS  Google Scholar 

  164. Sankaram, M. B.; Brophy, P. J.; Marsh, D. Selectivity of interaction of phospholipids with bovine spinal cord myelin basic protein studied by spin-label electron spin resonance. Biochemistry 28:9699–9707; 1989.

    Article  PubMed  CAS  Google Scholar 

  165. Schaffer, W. I.; Simkins, S. G.; Lamore, B. J. A system employing a minimal defined medium for the selection of tumorigenic cells. In Vitro Cell. Dev. Biol. 26:737–740; 1990.

    Article  Google Scholar 

  166. Schlame, M.; Horvath, I.; Török, Z., et al. Intramembraneous hydrogenation of mitochondrial lipids reduces the substrate availability, but not the enzyme activity of endogenous phospholipase A. The role of polyunsaturated phospholipid species. Biochim. Biophys. Acta 1045:1–8; 1990.

    PubMed  CAS  Google Scholar 

  167. Schroeder, F. Fluorescence probes unravel asymmetric structure of membranes. In: Roodyn, D. B., ed. Subcellular biochemistry, vol. II. New York: Plenum Press; 1985:51–101 (review).

    Google Scholar 

  168. Schuber, F. Influence of polyamines on membrane functions. Biochem. J. 260:1–10; 1989 (review).

    PubMed  CAS  Google Scholar 

  169. Schuler, I.; Duportail, G.; Glasser, N., et al. Soybean phosphatidylcholine vesicles containing plant sterols: a fluorescence anisotropy study. Biochim. Biophys. Acta 1028:82–88; 1990.

    Article  PubMed  CAS  Google Scholar 

  170. Seddon, J. M. Structure of the inverted hexagonal (H11) phase, and non-lamellar phase transition of lipids. Biochim. Biophys. Acta 1031:1–69; 1990 (review).

    PubMed  CAS  Google Scholar 

  171. Silverman, D. J.; Santucci, L. A. A potential protective role for thiols against cell injury caused byRickettsia rickettsii. Ann. NY Acad. Sci. 590:111–117; 1990.

    Article  PubMed  CAS  Google Scholar 

  172. Smith, C. D.; Snyderman, R. Modulation of inositol phospholipid metabolism by polyamines. Biochem. J. 256:125–130; 1988.

    PubMed  CAS  Google Scholar 

  173. Smith, W. L. The eicosanoids and their biochemical mechanisms of action. Biochem. J. 259:315–324; 1989.

    PubMed  CAS  Google Scholar 

  174. Sparling, M. L.; Kruszewska, B. Membrane fractions display different lipid and enzyme content in three cell types in 16-cell stage embryos of sea urchins. Biochim. Biophys. Acta 1028:117–140; 1990.

    Article  PubMed  CAS  Google Scholar 

  175. Spector, A. A.; Mathur, S. N.; Kaduce, T. L., et al. Lipid nutrition and metabolism of cultured mammalian cells. Prog. Lipid Res. 19:155–186; 1981 (review).

    Article  Google Scholar 

  176. Spector, A. A.; Yorek, M. A. Membrane lipid composition and cellular function. J. Lipid Res. 26:1015–1035; 1985 (review).

    PubMed  CAS  Google Scholar 

  177. Spoerri, P. E.; Caple, C. G.; Roisen, F. J. Taurine-induced neuronal differentiation; the influence of calcium and the ganglioside GMI. Int. J. Dev. Neurosci. 8:491–503; 1990.

    Article  PubMed  CAS  Google Scholar 

  178. Sporn, M. B.; Roberts, A. B.; Wakefield, L. M., et al. Transforming growth factor-β: biological function and chemical structure. Science 233:532–534; 1986 (review).

    Article  PubMed  CAS  Google Scholar 

  179. Sporn, M. B.; Roberts, A. B.; Wakefield, L. M., et al. Some recent advances in the chemistry and biology of transforming growth factor-Beta. J. Cell Biol. 105:1039–1045; 1987 (review).

    Article  PubMed  CAS  Google Scholar 

  180. Stanley-Samuelson, D. W.; Dadd, R. H. Long chain polyunsaturated fatty acids: patterns of occurrence in insects. Insect Biochem. 13:549–558; 1983.

    Article  CAS  Google Scholar 

  181. Stegmann, T.; Doms, R. W.; Helenius, A. Protein mediated membrane fusion. Annu. Rev. Biophys. Biophys. Chem. 18:187–211; 1989.

    Article  PubMed  CAS  Google Scholar 

  182. Stocker, R.; Peterhans, E. Synergistic interaction between vitamin E and the bile pigments bilirubin and biliverdin. Biochim. Biophys. Acta 1002:238–244; 1989.

    PubMed  CAS  Google Scholar 

  183. Stocker, R.; McDonagh, A. F.; Glazer, A. N., et al. Antioxidant activities of bile pigments: biliverdin and bilirubin. In: Packer, L.; Glazer, A. N., eds. Oxygen radicals in biological systems. Part B, Oxygen radicals and antioxidants (Methods in enzymology, vol. 186). San Diego: Academic Press, Inc. 1990:301–309.

    Chapter  Google Scholar 

  184. Suslick, K. S. Sonochemistry. Science 247:1439–1445; 1990.

    Article  CAS  PubMed  Google Scholar 

  185. Svoboda, J. A.; Imberski, R. B.; Lusby, W. R.Drosophila melanogaster does not dealkylate [C14] sitosterol. Experientia 45:983–985; 1989.

    Article  CAS  Google Scholar 

  186. Szejtli, J. Cyclodextrins in biotechnology. Starch 38:388–390; 1986.

    Article  CAS  Google Scholar 

  187. Szejtli, J. Cyclodextrin technology: topics in inclusion science. Dordrecht. The Netherlands: Kluwer Academic Publishers; 1988.

    Google Scholar 

  188. Takada, H.; Kotani, S. Structural requirements of LipidA for endotoxicity and other biological activities. Criti. Rev. Microbiol. 16:477–523; 1989.

    CAS  Google Scholar 

  189. Takahashi, S. Conformation of membrane fusion-active 20-residue peptides with or without lipid bilayers. Implications of α-helix formation for membrane fusion. Biochemistry 29:6257–6264; 1990.

    Article  PubMed  CAS  Google Scholar 

  190. Taylor, A. E. R.; Baker, J. R., editors.In vitro methods for parasite cultivation. London: Academic Press; 1987.

    Google Scholar 

  191. Thomas, G.; Loriette, C.; Pepin, D., et al. Selective channelling of arachidonic and linoleic acids into glycerolipids of rat hepatocytes in primary culture. Biochem. J. 256:641–647; 1988.

    PubMed  CAS  Google Scholar 

  192. Tirmenstein, M.; Reed, D. J. Effects of glutathione on the α-tocopherol-dependent inhibition of nuclear lipid peroxidation. J. Lipid Res. 30:959–965; 1989.

    PubMed  CAS  Google Scholar 

  193. Tompkins, G. J.; Dougherty, E. M.; Goodwin, R. H., et al. Maintenance of infectivity and virulence of nuclear polyhedrosis viruses during serial passage in noctuid (Lepidoptera:Noctuidae) cell lines. J. Econ. Entomol. 84:445–449; 1991.

    Google Scholar 

  194. Turco, S. J. Structure of theLeishmania donovani lipophosphoglycan. In: Agabian, N.; Cerami, A., eds. Parasites, molecular biology, drug and vaccine design. UCLA symposia on molecular and cellular biology, new series, vol. 130. New York: Wiley-Liss; 1990:173–181.

    Google Scholar 

  195. vandenBerg, J. J. M.; Kuypers, F. A.; Roelofsen, B., et al. The cooperative action of vitamins E and C in the protection against peroxidation of parinaric acid in human erythrocyte membranes. Chem. Physics Lipids. 53:309–320; 1990.

    Article  CAS  Google Scholar 

  196. Van der Horst, D. J. Lipid transport in insects. In: Mittler, T. E.; Dadd, R. H., eds. Metabolic aspects of lipid nutrition in insects. Boulder, CO: Westview Press; 1983:183–202 (review).

    Google Scholar 

  197. Van Laere, A. Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63:201–210; 1989.

    Google Scholar 

  198. van Meer, G. Lipid traffic in animal cells. Annu. Rev. Cell Biol. 5:247–275; 1989.

    Article  PubMed  Google Scholar 

  199. Vaughn, J. L.; Fan, F. Use of commercial serum replacements for the culture of insect cells. In Vitro Cell. Dev. Biol. 25:143–145; 1989.

    Article  Google Scholar 

  200. Vaughn, J. L.; Fan, F.; Dougherty, E. M., et al. The use of commercial serum replacements in media for the in vitro replication of nuclear polyhedrosis virus. J. invertebr. Pathol. 58; 1991.

  201. Venkitaraman, A. R.; Hall, S. B.; Notter, R. H. Hydrophobic homopolymeric peptides enhance the biophysical activity of synthetic lung phospholipids. Chem. Phys. Lipids. 53:157–164; 1990.

    Article  PubMed  CAS  Google Scholar 

  202. Vial, H. J.; Ancelin, M. L.; Thuet, M. J., et al. Phospholipid metabolism inPlasmodium-infected erythrocytes: guidelines for further studies using radioactive precursor incorporation. Parasitology 98:351–357; 1989.

    Article  PubMed  CAS  Google Scholar 

  203. Volkman, L. E.; Zaal, K. J. M.Autographa californica M nuclear polyhedrosis virus: microtubules and replication. Virology 175:292–302; 1990.

    Article  PubMed  CAS  Google Scholar 

  204. Weinberger, C.; Bradley, D. J. Gene regulation by receptors binding lipid-soluble substances. Annu. Rev. Physiol. 52:823–840; 1990.

    Article  PubMed  CAS  Google Scholar 

  205. Weis, F. M. B.; Davis, R. J. Regulation of epidermal growth factor receptor signal transduction, role of gangliosides. J. Biol. Chem. 265:12059–12066; 1990.

    PubMed  CAS  Google Scholar 

  206. Weske, B.; Dennis, R. D.; Helling, F., et al. Glycosphingolipids in insects, chemical structures of two variants of a glucuronic-acid-containing ceramide hexasaccharide from a pupae ofCalliphora vicina (Insecta:Diptera), distinguished by a N-acetylglucosamine-bound phosphoethanolamine sidechain. Eur. J. Biochem. 191:379–388; 1990.

    Article  PubMed  CAS  Google Scholar 

  207. Wharton, K. A.; Johansen, K. M.; Xu, T., et al. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581; 1985.

    Article  PubMed  CAS  Google Scholar 

  208. Wiemken, A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Leeuwenhoek J. Microbiol. 58:209–217; 1990.

    Article  CAS  Google Scholar 

  209. Wilkie, G. E. I.; Stockdale, H.; Pirt, S. V. Chemically-defined media for production of insect cells and viruses in vitro. Dev. Biol. Stand. 46:29–37; 1980.

    PubMed  CAS  Google Scholar 

  210. Willis, A. L.; Smith, D. L. Dihomo-gamma-linolenic and gamma-linolenic acids in health and disease. In: Spiller, G. A.; Scala, J., eds. New protective roles for selected nutrients. New York: Alan R. Liss, Inc.; 1989:39–108 (review).

    Google Scholar 

  211. Woodle, M. C.; Papahadjopoulos, D. Liposome preparation and size characterization. In: Fleischer, S.; Fleischer, B., eds. Biomembranes part R, transport theory: cells and model membranes (Methods in enzymology, vol. 171). San Diego: Academic Press, Inc.; 1989:193–217, 198–201.

    Google Scholar 

  212. Wyss, C. Hormone and growth factor effects on the proliferation of dipteran cell lines in a defined medium. In: Kuroda, Y.; Kurstak, E.; Maramorosch, K., eds. Invertebrate and fish tissue culture, proceedings of the seventh international conference on invertebrate and fish tissue culture. Tokyo: Japan Scientific Societies Press; 1988:19–22.

    Google Scholar 

  213. Yeagle, P. L. Lipid regulation of cell membrane structure and function. FASEB J. 3:1833–1842; 1989 (review).

    PubMed  CAS  Google Scholar 

  214. Zafra, F.; Alcantara, R.; Gomeza, J., et al. Arachidonic acid inhibits glycine transport in cultured glial cells. Biochem. J. 271:237–242; 1990.

    PubMed  CAS  Google Scholar 

  215. Zelikovic, I.; Chesney, R. W. Taurine. In: Spiller, G. A.; Scala, J., eds. New protective roles for selected nutrients. New York: Alan R. Liss, Inc.; 1989:253–294 (review).

    Google Scholar 

  216. Zhang, H.; Buckley, N. E.; Gibson, K., et al. Sphingosine stimulates cellular proliferation via a protein kinase c-independent pathway. J. Biol. Chem. 265:76–81; 1990.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodwin, R.H. Replacement of vertebrate serum with lipids and other factors in the culture of invertebrate cells, tissues, parasites, and pathogens. In Vitro Cell Dev Biol - Animal 27, 470–478 (1991). https://doi.org/10.1007/BF02631147

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02631147

Key words

Navigation