Skip to main content
Log in

The intracellular ionic strength of red cells and the influence of complex formation

  • Short Paper
  • Published:
Comparative Haematology International Aims and scope Submit manuscript

Abstract

Various cellular features of red blood cells, such as transmembrane transport and the physicochemical properties of haemoglobin, are affected by ionic strength. In relation to sickle cell and other abnormal forms of haemoglobin, the effects of ionic strength assume biomedical relevance. The knowledge of the actual value of intracellular ionic strength is therefore important when performing in vitro studies. A comparison is made here of the intracellular ionic strength of red cells, depending on whether complex formation between multivalent ions is taken into account. A 20% difference is found, which for cell-free experiments would have significant consequences for a number of red cell-related processes. Complex formation between ions should therefore be considered in assuming a value of intracellular ionic strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Antonini E, Brunori M (1971) Hemoglobin and myoglobin in their reactions with ligands. North Holland, Amsterdam, pp 110–111

    Google Scholar 

  • Berger H, Jänig G-R, Gerber G et al. (1973) Interaction of haemoglobin with ions. Interactions among magnesium, adenosine 5′-triphosphate, 2,3-bisphosphoglycerate, and oxygenated and deoxygenated human haemoglobin under simulated intracellular conditions. Eur J Biochem 38:553–562

    Article  PubMed  CAS  Google Scholar 

  • Bookchin RM, Balazs T (1986) Ionic strength dependence of the polymer solubilities of deoxyhemoglobin S+C and S+A mixtures. Blood 67:887–892

    PubMed  CAS  Google Scholar 

  • Eaton JW, Skelton JD, Swofford HS et al. (1973) Elevated erythrocyte calcium in sickle cell disease. Nature 246:105–106

    Article  PubMed  CAS  Google Scholar 

  • Elbaum D, Harrington JP, Bookchin RM et al. (1978) Kinetics of HbS gelation. Effect of alkylureas, ionic strength and other hemoglobins. Biochim Biopbys Acta 534:228–238

    CAS  Google Scholar 

  • Fischer S, Nagel RL, Bookchin RM et al. (1975) The binding of hemoglobin to membranes of normal and sickle erythrocytes. Biochim Biophys Acta 375:422–433

    Article  PubMed  CAS  Google Scholar 

  • Gerber G, Berger H, Jänig G-R et al. (1973) Interaction of haemoglobin with ions. Quantitative description of the state of magnesium, adenosine 5′-triphosphate, 2,3-bisphosphoglycerate, and human haemoglobin under simulated intracellular conditions. Eur J Biochem 38:563–571

    Article  PubMed  CAS  Google Scholar 

  • Hamasaki N, Rose ZB (1974) The binding of phosphorylated red cell metabolites to human hemoglobin A. J Biol Chem 249:7896–7901

    PubMed  CAS  Google Scholar 

  • Lilley GL, Fung LW-M (1987) Hemoglobin membrane interaction at physiological ionic strength and temperature. Life Sci 41:2429–2436

    Article  PubMed  CAS  Google Scholar 

  • Long C (ed) (1961) Biochemists’ handbook. Spon Ltd, London, pp 878,879

    Google Scholar 

  • Magnani M, Stocchi V, Dechà M et al. (1984) Regulatory properties of rabbit red blood cell hexokinase at conditions close to physiological. Biochim Biophys Acta 804:145–153

    Article  PubMed  CAS  Google Scholar 

  • Manchester KL (1980) Determination of magnesium and potassium binding constants to phosphoenolpyruvate, 2- and 3-phosphoglycerate and a number of other anions. Biochim Biophys Acta 630:225–231

    PubMed  CAS  Google Scholar 

  • Motais R, Guizouam H, Garcia-Romeu F (1991) Red cell volume regulation: the pivotal role of ionic strength in controlling swellingdependent transport systems. Biochim Biophys Acta 1075:169–180

    PubMed  CAS  Google Scholar 

  • Nigen AM, Manning JM (1975) The interaction of anions with hemoglobin carbamylated on secfic NH2-terminal residues. J Biol Chem 250:8248–8250

    PubMed  CAS  Google Scholar 

  • Nikinmaa M (1990) Zoophysiology Vol 28. Vertebrate red blood cells: adaptations of function to respiratory requirements. Springer-Verlag, Berlin, pp 100,145

    Google Scholar 

  • Ohanian V, Wolfe LC, John KM et al. (1984) Analysis of the ternary interaction of the red cell membrane skeletal proteins spectrin, actin, and 4.1. Biochemistry 23:4416–4420

    Article  PubMed  CAS  Google Scholar 

  • Pauly H, Schwan HP (1966) Dielectric properties and ion mobility in erythrocytes. Biophys J 6:621–639

    Article  PubMed  CAS  Google Scholar 

  • Saks VA, Khuchua ZA, Kuznetsov AV et al. (1986) Heart mitochondria in physiological salt solution: not ionic strength but salt composition is important for association of creatine kinase with the inner membrane surface. Biochem Biophys Res Commun 139:1262–1271

    Article  PubMed  CAS  Google Scholar 

  • Solomon AK, Toon MR, Dix JA (1986) Osmotic properties of human red cells. J Membr Biol 91:259–273

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mouat, M.F., Manchester, K.L. The intracellular ionic strength of red cells and the influence of complex formation. Comparative Haematology International 8, 58–60 (1998). https://doi.org/10.1007/BF02628107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02628107

Keywords

Navigation