Skip to main content
Log in

Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator

  • Regular Papers
  • Published:
In Vitro Cellular & Developmental Biology Aims and scope Submit manuscript

Summary

A new computerized mechanical cell stimulator device for tissue cultured cells is described which maintains the cells in a horizontal position during mechanical stretching of up to 400% in substratum length. Mechanical stimulation of myogenic cells in this device initiates several aspects of in vivo skeletal muscle organogenesis not seen in normal static tissue culture environments. Embryonic skeletal muscle cells from avian m. pectoralis are grown in the device attached to the collagen-coated elastic substratum. Dynamic stretching of the substratum in one direction for 3 d at a rate (0.35 mm/h) that simulates in vivo bone elongation during development causes the myoblasts to fuse into parallel arrays of myotubes which are 2 to 4 times longer than myotubes grown under static culture conditions. This longitudinal myotube growth is accompanied by increased rates of cell proliferation and myoblast fusion. Prestretching the collagen-coated substratum before cell plating also results in increased cell proliferation, myotube orientation, and longitudinal myotube growth. The effects of substratum stretching on myogenesis in this model system thus occur by alterations in the cell’s extracellular matrix and not by acting directly on the cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abercrombie, M. Contact inhibition and malignancy. Nature 281:259–262; 1979.

    Article  PubMed  CAS  Google Scholar 

  2. Alder, A. B.; Crawford, G. N. C.; Edwards, R. G. The effect of limitation of movement on longitudinal muscle growth. Proc. R. Soc. (Lond., Ser. B) 150:554–562; 1959.

    Article  CAS  Google Scholar 

  3. Bassett, C. A. Biophysical principles affecting bone structure. In: Bourne, H. G., ed. Biochemistry and physiology of bone, 2nd ed. New York: Academic Press; 1972:1–76.

    Google Scholar 

  4. Belloussou, L. V.; Dorfman, J. G.; Cherdantzev, V. G. Mechanical stresses and morphological patterns in amphibian embryos. J. Embryol. Exp. Morphol. 34:559–574; 1975.

    Google Scholar 

  5. Buckley, M. J.; Banes, A. J.; Levin, L. G., et al. Osteoblasts increase their rate of division and align in response to cyclic mechanical tension in vitro. Bone Miner. 4:225–237; 1988.

    PubMed  CAS  Google Scholar 

  6. Campion, D. R. The muscle satellite cell: a review. Int. Rev. Cytol. 87:225–251; 1984.

    PubMed  CAS  Google Scholar 

  7. Carey, E. J. Studies in the dynamics of histogenesis. IV. Tension of differential growth as a stimulus to myogenesis. Am. J. Anat. 29:93–115; 1921.

    Article  Google Scholar 

  8. Chevallier, A.; Kieny, M.; Mauger, A., et al. Developmental fate of the somatic mesoderm in the chick embryo. In: Ede, A. D.; Hinchliffe, J. R.; Ball, M. eds. Vertebrate limb and somite morphogenesis. London: Cambridge University Press; 1977:421–432.

    Google Scholar 

  9. Chiquet, M.; Eppenberger, H. M.; Turner, D. C. Muscle morphogenesis: evidence for an organizing function of exogenous fibronectin. Dev. Biol. 88:220–235; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Chiquet, M.; Puri, E. C.; Turner, D. C. Fibronectin mediates attachment of chicken myoblasts to a gelatin-coated substratum. J. Biol. Chem. 254:5475–5482; 1979.

    PubMed  CAS  Google Scholar 

  11. de la Haba, G.; Amundsen, R. The contribution of embryo extract to myogenesis of avian striated muscle in vitro. Proc. Natl. Acad. Sci. USA 69:1131–1135; 1972.

    Article  PubMed  Google Scholar 

  12. Ede, D. A.; Flint, O. P. Cell movement and adhesion in the developing chick wing bud: studies on cultured mesenchymal cells from normal and talpid mutant embryos. J. Cell Sci. 18:301–313; 1975.

    PubMed  CAS  Google Scholar 

  13. Folkman, J.; Moscona, A. Role of cell shape in growth control. Nature 273:345–349; 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Goldspink, G. Alterations in myofibril size and structure during growth, exercise, and changes in environmental temperature. In: Peachey, D. L.; Adrian, R. H.; Geiger, S. R., eds. Handbook of Physiology. Section 10. Skeletal Muscle. Bethesda, MD: American Physiological Society; 1983:539–554.

    Google Scholar 

  15. Goss, R. J. Regulation of organ and tissue growth. New York: Academic Press; 1972.

    Google Scholar 

  16. Hauschka, S.; Konigsberg, I. R. The influence of collagen on the development of muscle clones. Proc. Natl. Acad. Sci. USA 55:119–126; 1966.

    Article  PubMed  CAS  Google Scholar 

  17. Hironaka, T.; Ikari, Y.; Miyata, Y. Development and growth of extensor arpi radialis longus muscle in normal and dystrophic chickens. Exp. Neurol. 83:378–391; 1984.

    PubMed  CAS  Google Scholar 

  18. Holmes, L. B.; Trelstad, R. L. Cell polarity in precartilage mouse limb mesenchyme cells. Dev. Biol. 78:511–520; 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Kardami, E.; Spector, D.; Strohman, R. C. Myogenic growth factor present in skeletal muscle is purified by heparin-affinity chromatography. Proc. Natl. Acad. Sci. USA 82:8044–8047; 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Kuhl, U.; Ocalon, M.; Timpl, R., et al. Role of laminin and fibronectin in selecting myogenic versus fibrogenic cells from skeletal muscle in vitro. Dev. Biol. 117:628–635; 1986.

    Article  PubMed  CAS  Google Scholar 

  21. Landmesser, L. T.; O’Donovan, M. J. Activation patterns of embryonic chick hind limb muscles recorded in ovo and in an isolated spinal cord preparation. J. Physiol. 347:189–204; 1984.

    PubMed  CAS  Google Scholar 

  22. Luther, P. W.; Peng, H. B.; Lin, J. J. C. Changes in cell shape and actin distribution induced by constant electric fields. Nature 303:61–64; 1983.

    Article  PubMed  CAS  Google Scholar 

  23. MacKay, B.; Harrop, T. J. An experimental study of the longitudinal growth of skeletal muscle in the rat. Acta. Anat. 72:38–49; 1969.

    Article  PubMed  CAS  Google Scholar 

  24. Mayne, R.; Sanderson, R. D. The extracellular matrix of skeletal muscle. Collagen Relat. Res. 5:449–468; 1985.

    CAS  Google Scholar 

  25. Odell, G. M.; Oster, G.; Alberch, P., et al. The mechanical basis of morphogenesis I. Epithelial folding and invagination. Dev. Biol. 85:446–462; 1981.

    Article  PubMed  CAS  Google Scholar 

  26. Olwin, B. B.; Hall, Z. Developmental regulation of laminin accumulation in the extracellular matrix of a mouse muscle cell line. Dev. Biol. 112:359–367; 1985.

    Article  PubMed  CAS  Google Scholar 

  27. Pearson, M. L.; Epstein, H. F. Muscle Development: molecular and cellular control. New York: Cold Spring Harbor Laboratory; 1982.

    Google Scholar 

  28. Sheehan, D. C.; Hrapchak, B. B. Theory and practice of histochemistry. St. Louis: C. V. Mosby Co.; 1980:143.

    Google Scholar 

  29. Shellswell, G. B.; Bailey, A. J.; Duance, V. C., et al. Has collagen a role in muscle pattern formation in the chick wing? 1. An immunofluorescence study. J. Embryol. Exp. Morphol. 60:245–254; 1980.

    PubMed  CAS  Google Scholar 

  30. Stewart, D. M. The role of tension in muscle growth. In: Goss, R. J., ed. Regulation of organ and tissue growth. New York: Academic Press; 1972:77–100.

    Google Scholar 

  31. Summers, P. J.; Ashmore, C. R.; Lees, Y. B., et al. Stretch-induced growth in chicken wing muscles: role of soluble growth-promoting factors. J. Cell. Physiol. 125:288–294; 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Totsuka, T. A bone-inbalance hypothesis for the pathogenesis of murine muscular dystrophy. In: Ebashi S.; Ozawa, E., eds. Muscular dystrophy: biochemical aspects. Tokyo and Berlin: Japan Science Society Press and Springer-Verlag; 1983:29–38.

    Google Scholar 

  33. Turner, D. C.; Gibralter, D. Regulation of cell interactions during skeletal muscle development. Curr. Top. Cell. Regul. 26:115–126; 1985.

    PubMed  CAS  Google Scholar 

  34. Turner, D. C.; Lawton, J.; Dollenmeier, P., et al. Guidance of myogenic cell migration by oriented deposits of fibronectin. Dev. Biol. 95:497–504; 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Vandenburgh, H. H. Dynamic mechanical orientation of skeletal myofibers in vitro. Dev. Biol. 93:438–443; 1982.

    Article  PubMed  CAS  Google Scholar 

  36. Vandenburgh, H. H. Cell shape and growth regulation in skeletal muscle: exogenous versus endogenous factors. J. Cell. Physiol. 116:363–371; 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Vandenburgh, H. H. Motion into mass: How does tension stimulate muscle growth?. Med. Sci. Sports Exercise 19:S142-S149; 1987.

    CAS  Google Scholar 

  38. Vandenburgh, H. H. A computerized mechanical cell stimulator for tissue culture: effects on skeletal muscle organogenesis. In Vitro 24:609–619; 1988.

    CAS  Google Scholar 

  39. Vandenburgh, H. H.; Kaufman, S. In vitro model for stretch-induced hypertrophy of skeletal muscle. Science 203:265–268; 1979.

    Article  PubMed  CAS  Google Scholar 

  40. Weiss, P. Functional adaptation and the role of ground substance in development. Am. Naturalist 118:389–407; 1933.

    Google Scholar 

  41. Williams, P. E.; Goldspink, G. The effect of immobilization on the longitudinal growth of striated muscle fibers. J. Anat. 116:45–55; 1973.

    PubMed  CAS  Google Scholar 

  42. Yoshizato, K.; Obinata, T.; Huang, H., et al. In vitro orientation of fibroblasts and myoblasts on aligned collagen film. Dev. Growth Differ. 23:175–184; 1981.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grant AR36266 from the National Institutes of Health, Bethesda, MD, and research grnat NAG2-414 from the National Aeronautics and Space Administration, Washington, DC. Parts of this work have appeard in abstract form, J. Cell. Biochem. 12C:360; 1988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenburgh, H.H., Karlisch, P. Longitudinal growth of skeletal myotubes in vitro in a new horizontal mechanical cell stimulator. In Vitro Cell Dev Biol 25, 607–616 (1989). https://doi.org/10.1007/BF02623630

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02623630

Key words

Navigation