Skip to main content
Log in

The accumulation of lactic acid and its influence on the growth ofPlasmodium falciparum in synchronized cultures

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Synchronization ofPlasmodium falciparum cultured in vitro results in a one-step growth pattern that allows the study of stage-specific metabolic activities of the parasites. Lactic acid (LA) was selected as a metabolic marker, and the concentration of this end product found in spent media was correlated with the different erythrocytic stages of the parasites. When the medium was changed at 12 h intervals, cultures containing predominantly trophozoites produced 3.66±0.55 μmol LA per 12 h per 107 parasitized cells (n=26), an amount of LA that is about 8 to 20 times higher than that found in corresponding cultures containing predominantly ring forms. Depending on the stage of development, parasitized red blood cells produced between 5 and 100 times more LA than uninfected erythrocytes (3.72±0.62 μmol LA per 12 hours per 109 red blood cells) (n=41) when cultured under identical conditions. The intraerythrocytic development of the parasites was not impaired by exposure to extracellular concentrations of LA up to 12 mM over a 12 h period. The growth resulting in such cultures was described as uninhibited and was characterized by a multiplication index of 10 or higher. Above the threshold of 12 mM of LA, progressive inhibition of parasite development occurred. The stage-specific LA production reported can be used to predict the amount of LA that will have accumulated at the end of a subsequent 12 h incubation period during synchronized in vitro growth ofPlasmodium falciparum. Using these values, it is possible to establish an optimal medium exchange schedule, thereby assuring uninhibited growth and a correspondingly high parasite yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trager, W.; Jensen, J. B. Human malaria parasites in continuous culture. Science 193: 674–675; 1976.

    Article  Google Scholar 

  2. Jensen, J. B.; Trager, W. 1977.Plasmodium falciparum in culture: Use of outdated erythrocytes and description of the candle jar method. J. Parasitol. 63: 883–886; 1977.

    Article  PubMed  CAS  Google Scholar 

  3. Trager, W.Plasmodium falciparum in culture: Improved continuous flow method. J. Protozool. 26: 125–129; 1979.

    PubMed  CAS  Google Scholar 

  4. Thaitong, S.; Beale, G. H. Resistance of ten Thai isolates ofPlasmodium falciparum to chloroquine and pyrimethamine byin vitro tests. Trans. R. Soc. Trop. Med. Hyg. 75: 271–273; 1981.

    Article  Google Scholar 

  5. Zolg, J. W.; MacLeod, A. J.; Dickson, I. H.; Scaife, J. G.Plasmodium falciparum: Modifications of thein vitro culture conditions improving parasitic yeilds. J. Parasitol. 68: 1072–1080; 1982.

    Article  PubMed  CAS  Google Scholar 

  6. Lambros, C.; Vanderberg, J. P. Synchronization ofPlasmodium falciparum erythrocytic stages in culture. J. Parasitol. 65: 418–420; 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Nivet, C.; Pereira da Silva, L. Serum factors in the development ofPlasmodium falciparum in red blood cellsin vitro. INSERM ed. Cancer immunology and parasitic immunity. Vol. 97. Paris; 1980: 329–339.

  8. Ellis, E. L.; Delbrück, M. The growth of bacteriophage. J. Gen. Physiol. 22: 365–384; 1939.

    Article  Google Scholar 

  9. Rosario, V. Cloning of naturally occurring mixed infections of malarial parasites. Science 212: 1037–1038; 1981.

    Article  PubMed  CAS  Google Scholar 

  10. Sherman, I. W. 1979. Biochemistry ofPlasmodium (malarial parasites). Microbiol. Rev. 43: 453–495; 1979.

    PubMed  CAS  Google Scholar 

  11. Homewood, C. A.; Neame, K. D. Biochemistry of malarial parasites. Kreier, J. P. ed. Malaria. Vol. 1. New York: Academic Press; 1980: 345–405.

    Google Scholar 

  12. Scheibel, L. W.; Pflaum, W. K. Carbohydrate metabolism inPlasmodium knowlesi. Comp. Biochem. Physiol. 37: 543–553; 1970.

    Article  CAS  Google Scholar 

  13. Oelshlegel, F. J.; Brewer, G. J. Parasitism and the red blood cell. Surgenor, D. M. ed. The red blood cell. New York: Academic Press; 1975: 1263–1302.

    Google Scholar 

  14. Scheibel, L. W.; Adler, A.; Trager, W. Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasitesPlasmodium falciparum. Proc. Natl. Acad. Sci. USA 76: 5303–5307; 1979.

    Article  PubMed  CAS  Google Scholar 

  15. Pfaller, M. A.; Krogstad, D. J.; Parquette, A. R.; Nguyen-Dinh, P.Plasmodium falciparum: Stage-specific lactate production in synchronized cultures. Exp. Parasitol. 54: 391–396; 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Dubinsky, W. D.; Racker, E. The mechanism of lactate transport in human erythrocytes. J. Membr. Biol. 44: 25–36; 1978.

    Article  PubMed  CAS  Google Scholar 

  17. Ginsburgh, H.; Kutner, S.; Krugliak, M.; Cabantchik, Z. I. 1981. Inhibition ofP. falciparum growthin vitro by specific inhibitors of red blood cell anion transport. Slutzky, G. M. ed. The biochemistry of parasites, Oxford: Pergamon Press; 1981: 86–96.

    Google Scholar 

  18. Kutner, S.; Baruch, D.; Ginsburg, H.; Cabantchik, Z. I. Alterations in membrane permeability of malaria-infected human erythrocytes are related to the growth stage of the parasite. Biochim. Biophys. Acta 687: 113–117; 1982.

    Article  PubMed  CAS  Google Scholar 

  19. Grimes, A. J. The human red cell metabolism. Oxford: Blackwell Scientific Publications; 1980.

    Google Scholar 

  20. Minakami, S.; Yoshikawa, H. Studies on erythrocyte glycolysis. III. The effects on active cation transport, pH and inorganic phosphate concentrations on erythrocyte glycolysis. J. Biochem. 59: 145–150; 1966.

    PubMed  CAS  Google Scholar 

  21. Sander, B. J.; Lowery, M. S.; Kruckeberg, W. C. Glycolytic metabolism in malaria infected red cells. Progress in clinical and biological research. Vol. 55, The Red Cell: Fifth Ann. Arbor Conference. New York: Alan R. Liss, Inc.; 1981: 469–483.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

J. W. Z. was supported during part of this study by a long-term fellowship of the European Molecular Biology Organization, Heidelberg, West Germany, followed by a Research Associateship from the National Research Council, Washington, D.C. The project was supported by grants from the Medical Research Council to J. G. S. and by the Naval Research and Development Command, Work Unit No. 3M 162 770 A871 AE 312. The opinions or assertions contained herein are the private ones of the authors and are not to be construed as official or reflecting the views of the U.S. Navy Department or the naval service at large.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zolg, J.W., Macleod, A.J., Scaife, J.G. et al. The accumulation of lactic acid and its influence on the growth ofPlasmodium falciparum in synchronized cultures. In Vitro 20, 205–215 (1984). https://doi.org/10.1007/BF02618189

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02618189

Key words

Navigation