Skip to main content
Log in

Equivariant frame fields on spheres with complementary equivariant complex structures

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

LetG be a finite group and letM be a unitary representation space ofG. We consider the existence problem of equivariant frame fields on the unit sphereS(M) whose orthogonal complements in the tangent bundleT(S(M)) admitG-equivariant complex structures. Under mild fixed point conditions we give a complete solution for this problem whenG is either ℤ/2ℤ or a finite group of odd order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdelal, M., Önder, T.: Homotopy groups of some homogeneous spaces and some remarks on their sections over spheres. Rend. Circ. Mat. Palermo (2).39, 381–394 (1990)

    MathSciNet  Google Scholar 

  2. Adams, J.F.: On the groupsJ(X). I. Topology.2, 181–195 (1963)

    Article  MathSciNet  Google Scholar 

  3. Adams, J.F., Walker, G.: On complex Stiefel manifolds. Proc. Cambridge Phil. Soc.61, 81–103 (1965)

    MathSciNet  Google Scholar 

  4. Atiyah, M.F., Todd, J.A.: On complex Stiefel manifolds. Proc. Cambridge Phil. Soc.56, 342–353 (1960)

    MathSciNet  Google Scholar 

  5. Becker, J.C.: The span of spherical forms. Amer. J. Math.94, 991–1026 (1972)

    Article  MathSciNet  Google Scholar 

  6. Dibaĝ, İ.: Almost complex substructures on the sphere. Proc. Amer. Math. Soc.61, 361–366 (1976)

    Article  MathSciNet  Google Scholar 

  7. Dibaĝ, İ.: Degree theory of spherical fibrations. Tohoku. Math. J.34, 161–177 (1982)

    MathSciNet  Google Scholar 

  8. tom Dieck, T.: Transformation groups and representation theory. Lecture notes in Math.,766, Springer-Verlag, Berlin and New York 1979

    MATH  Google Scholar 

  9. tom Dieck, T.: Transformation groups. Walter de Gruyter, Berlin and New York 1987

    MATH  Google Scholar 

  10. Hauschild, H., and Waner, S.: Equivariant Dold theorem modk and Adams conjecture. Illinois J. Math.27, 52–66 (1983)

    MathSciNet  Google Scholar 

  11. Kakutani, S.: The equivariant span of the unit spheres in representation spaces. Osaka J. Math.20, 439–460, (1983)

    MathSciNet  Google Scholar 

  12. May, P.: Classifying spaces and fibrations. Mem. Amer. Math. Soc.155, (1975)

  13. Milnor, J., Stasheff, J.D.: Characteristic classes. Princeton University Press, Princeton, N.J., 1974

    MATH  Google Scholar 

  14. Namboodiri, U.: Equivariant vector fields on spheres. Trans. Amer. Math. Soc.278, 431–460 (1983)

    Article  MathSciNet  Google Scholar 

  15. Petrie, T., Randall, J.D.: Transformation groups on manifolds. Marcel-Dekker Inc., New York and Basel 1984

    MATH  Google Scholar 

  16. Steenrod, N.E.: The topology of fibre bundles, Princeton, N.J. 1951

  17. Tanaka, R.: On the stable James numbers of Thom complexes. Osaka J. Math.20, 137–142 (1983)

    MathSciNet  Google Scholar 

  18. Waner, S.: Classification of oriented equivariant spherical fibrations. Trans. Amer. Math. Soc.,27, 313–323 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This article was processed by the author using theLaTEX style filecljourl from Springer-Verlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Önder, T. Equivariant frame fields on spheres with complementary equivariant complex structures. Manuscripta Math 86, 393–407 (1995). https://doi.org/10.1007/BF02568001

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02568001

Keywords

Navigation