Skip to main content
Log in

Osteogenesis by chondrocytes from growth cartilage of rat rib

Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Chondrocytes were isolated from growth cartilage and resting cartilage of rat rib and cultivatedin vitro. The cultivated chondrocytes were placed in Millipore diffusion chambers, which were then implanted into the abdominal cavities of rats for several weeks and prepared for histological analysis. The results indicate that growth cartilage cells have a remarkable osteogenic potential, even after cultivationin vitro, whereas resting cartilage cells show no osteogenic activity. However, growth cartilage cells alone do not form new bone but require the participation of certain host cells to initiate osteogenic differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bentley, G., Greer, R. B.: The fate of chondrocytes in endochondral ossification in the rabbit. J. Bone Jt. Surg. B52, 571–577 (1970).

    CAS  Google Scholar 

  2. Bloom, W., Fawcett, D. W., A textbook of histology, 9th ed., p. 212–262, Philadelphia-London-Toronto: W. B. Saunders Co. 1968

    Google Scholar 

  3. Brighton, C. T., Sugioka, Y., Hunt, R.: Cytoplasmic structures of epiphyseal plate chondrocytes; Quantitative evaluation using electron micrographs of rat costochondral junctions with special reference to the fate of hypertrophic cells. J. Bone Jt. Surg. A55, 771–784 (1973).

    CAS  Google Scholar 

  4. Cahn, R. D., Coon, H. G., Cahn, M. B.: Growth of differentiated cells: Cell culture and cloning techniques. In: Methods in developmental biology, (Wilt, F., Wessells, N. K., eds.), p. 493–530, New York: Thomas Crowell 1967

    Google Scholar 

  5. Coon, H. G.: Clonal stability and phenotypic expression of chick cartilage cells. Proc. nat. Acad. Sci. (Wash.)55, 66–73 (1966).

    Article  CAS  Google Scholar 

  6. Gillette, R., Mardfin, D., Schour, I.: Osteogenesis in subcutaneous rib transplants between normal andia rats. Amer. J. Anat.99, 447–471 (1956)

    Article  PubMed  CAS  Google Scholar 

  7. Green, W. T., Jr.: Behavior of articular chondrocytes in cell culture. Clin. Orthop.75, 248–260 (1971)

    Article  PubMed  Google Scholar 

  8. Ham, A. W.: Histology, 5th ed., p. 373–450. Philadelphia and Montreal: J. B. Lippincott Co. 1965

    Google Scholar 

  9. Ham, R. G., Sattler, G. L.: Clonal growth of differentiated rabbit cartilage cells. J. cell. Physiol.72, 109–114 (1968)

    Article  PubMed  CAS  Google Scholar 

  10. Holtrop, M. E.: The origin of bone cells in endochondral ossification. In: Calcified tissues, (Fleisch, H., ed.), p. 32–36. Berlin-Heidelberg-New York: Springer 1966

    Google Scholar 

  11. Holtrop, M. E.: The potencies of the epiphyseal cartilage in endochondral ossification. Proc. kon. ned. Akad. Wet. Ser. C70, 29–28 (1967)

    CAS  Google Scholar 

  12. Holtrop, M. E.: Factors influencing the growth rate in endochondral ossification. Proc. kon. ned. Akad. Wet. Ser. C70, 29–38 (1967)

    CAS  Google Scholar 

  13. Holtrop, M. E.: The ultrastructure of the epiphyseal plate. I. The flattened chondrocytes. Calcif. Tiss. Res.9, 131–139 (1972)

    Article  CAS  Google Scholar 

  14. Holtrop, M. E.: The ultratructure of the epiphyseal plate. II. The hypertrophic chondrocytes. Calcif. Tiss. Res.9, 140–151 (1972)

    Article  CAS  Google Scholar 

  15. Holtzer, H., Abbott, J., Lash, J., Holtzer, S.: The loss of phenotypic traits by differentiated cellsin vitro. I. Dedifferentiation of cartilage cells. Proc. nat. Acad. Sci. (Wash.)46, 1533–1542 (1960)

    Article  CAS  Google Scholar 

  16. Kuhlman, R. E., McNamee, M. J.: The biochemical importance of the hypertrophic cartilage cell area to enchondral bone formation. J. Bone Jt. Surg. A52, 1025–1033 (1970)

    CAS  Google Scholar 

  17. Lacroix, P.: The organization of bones, p. 1–235. London: J. A. Churchill 1951

    Google Scholar 

  18. Levenson, G. E.: The effect of ascorbic acid on monolayer cultures of three types of chondrocytes. Exp. Cell Res.55, 225–228 (1969)

    Article  PubMed  CAS  Google Scholar 

  19. Shimomura, Y., Ray, R. D.: The fate of the hypertrophic cells in the growth cartilage I. Transplantation of the growth cartilage. Cent. Jap. J. orthop. traumat. Surg.16, 726–728 (1973).

    Google Scholar 

  20. Silberman, M., Frommer, J.: Ultrastructure of developing cartilage in the mandibular condyle of the mouse. Acta anat. (Basel)90, 330–346 (1974)

    Google Scholar 

  21. Sissons, H. A.: The growth of bone. In: Biochemistry and physiology of bone (Bourne, G. H., ed.), vol. III, p. 145–180, New York: Academic Press, 1971

    Google Scholar 

  22. Trueta, J.: The role of the vessels in osteogenesis. J. Bone Jt. Surg. B45, 402–418 (1963)

    Google Scholar 

  23. Urist, M. R., McLean, F. C.: Osteogenic potency and new bone formation by induction in transplants to the anterior chamber of the eye. J. Bone Jt. Surg. A34, 443–470 (1952)

    Google Scholar 

  24. Urist, M. R.: Bone formation by autoinduction. Science150, 893–899 (1965)

    Article  PubMed  CAS  Google Scholar 

  25. Urist, M. R., Dowell, T. A., Hay, P. H., Strates, B. S.: Inductive substrates for bone formation. Clin. Orthop.59, 59–96 (1968)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimomura, Y., Yoneda, T. & Suzuki, F. Osteogenesis by chondrocytes from growth cartilage of rat rib. Calc. Tis Res. 19, 179–187 (1975). https://doi.org/10.1007/BF02564002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02564002

Key words

Navigation