Skip to main content
Log in

Suggestion of a deficient osteoblastic function in diabetes mellitus: The possible cause of osteopenia in diabetics

  • Clinical Investigation
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

The mechanism underlying diabetic osteopenia is still unclear and may involve osteoblastic activity and/or the deficit of insulin's anabolic action. Bone gla protein (BGP) is synthesized by the osteoblast and its synthesis increases with 1,25(OH)2D3 and fluoride. Because 1,25(OH)2D3 also stimulates insulin secretion, sodium fluoride administration can be used to investigate deficient osteoblastic activity in diabetics, as reflected by BGP levels. BGP was determined before and after administering sodium fluoride at a dosage of 50 mg/day/15 days to three groups: 14 patients with insulin-dependent diabetes, 16 diabetics on oral antidiabetic treatment, and 25 controls, all of similar age, sex, and characteristics. Basal BGP values (mean±SD) were low in diabetics on insulin treatment (4.3±1.1 ng/ml) and in diabetics on oral antidiabetics (5.8±1.2 ng/ml) as compared with controls (6.5±0.7 ng/ml) (P<0.001 and <0.05, respectively). After giving fluoride, BGP values did not change in the two diabetic groups but did vary in controls (8.1±0.6 ng/ml,P<0.001). These results suggest that deficient osteoblast function could be responsible for osteopenia in diabetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hough S, Avioli LV (1984) Alterations of bone mineral metabolism in diabetes. In: Nattrass M, Santiago JV (eds) Recent advances in diabetes. Churchill Livingstone, New York, pp 223–229

    Google Scholar 

  2. Schneider LE, Sheld HP, McCain T, Haussler MR (1977) Experimental diabetes reduced circulating 1,25-dyhidroxyvitamin D in the rat. Science 196:1452–1454

    Article  PubMed  CAS  Google Scholar 

  3. Scheldt HP, Heath H, Wenger J (1978) Serum calcitonin and parathyroid hormone in experimental diabetes: effects of insulin treatment. Endocrinology 103:1368–1373

    Google Scholar 

  4. Heath H, Lambert PW, Service FJ, Arnaud SB (1979) Calcium homeostasis in diabetes mellitus. J Clin Endocrinol Metab 49:462–466

    PubMed  CAS  Google Scholar 

  5. Klein M, Frost HM (1964) The numbers of bone resorption and formation in rib. Henry Ford Hos Med Bull 12:527–536

    Google Scholar 

  6. Canalis EM, Dietrich JW, Maina DM, Raisz LG (1977) Hormonal control of bone collagen synthesis in vitro: effects of insulin and glucagon. Endocrinology 100:668–674

    Article  PubMed  CAS  Google Scholar 

  7. Nishimoto SK, Price PA (1979) Proof that the gammacarboxyglumatic acid-containing bone protein is synthesized in calf bone. J Biol Chem 254:437–441

    PubMed  CAS  Google Scholar 

  8. Rico H, Cabranes JA, Hernandez ER, Almoguera I (1987) Valores de osteocalcina en la diabetes mellitus y sus variaciones segun el tratamiento. Med Clin (Barc) 88:798–800

    CAS  Google Scholar 

  9. Palumeri E, Pedrazzoni M, Malaquino AM, Carapezzi C, Carbognani A, Maroni L (1984) Osteocalcin levels in diabetes mellitus. In: Christiansen C, Arnaud CD, Parfitt AM, Peck WA, Riggs L, (eds) Osteoporosis. Aalborg Stiftsbogtrykkeri, Denmark, pp 809–810

    Google Scholar 

  10. Wientroub S, Price PA, Reddi AH (1987) The dichotomy in the effects of 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 on bone gamma-carboxyglutamic acid-containing protein in serum and bone in vitamin D-deficient rats. Calcif Tissue Int 40:166–172

    Article  PubMed  CAS  Google Scholar 

  11. Delmas PD, Malaval L (1987) New biochemical markers of bone turnover. In: Cohn DV, Martin TJ, Meunier PJ (eds) Calcium regulation and bone metabolism: basic and clinical aspects, vol. 9. Elsevier Science Publisher, Amsterdam, pp 105–112

    Google Scholar 

  12. Beresford JN, Gallagher JA, Poser JW, Russell RGG (1984) Production of osteocalcin by human cells in vitro. Metab Bone Dis Rel Res 5:229–234

    Article  CAS  Google Scholar 

  13. Gundberg CM, Anderson M, Dickson I, Gallop PM (1986) “Glicated” osteocalcin in human and bovine bone. J Biol Chem 261:14557–14561

    PubMed  CAS  Google Scholar 

  14. Garlick RL, Mazer JS, Higgins PJ, Bunn HF (1983) Characterization of glycosylated hemoglobins. J Clin Invest 71:1062–1072

    PubMed  CAS  Google Scholar 

  15. Snow GR, Anderson C (1986) Short-term chronic fluoride administration and trabecular bone remodeling in Beagles: a pilot study. Calcif Tissue Int 38:217–221

    Article  PubMed  CAS  Google Scholar 

  16. Duda RJ, Jumar R, Nelson KI, Zinsmeister AR, Mann KG, Riggs BL (1987) 1,25-dihydroxyvitamin D stimulation test for osteoblast function in normal and osteoporotic postmenopausal women. J Clin Invest 79:1249–1253

    Article  PubMed  Google Scholar 

  17. Perlish JS, Bashey R, Lleischmajer R (1973) The in vitro effect of insulin on collagen synthesis in embryon chick tibia. Proc Soc Exp Biol Med 142:1152–1154

    PubMed  CAS  Google Scholar 

  18. Berney PW (1952) Osteoporosis and diabetes mellitus. J Iowa Med Soc 42:10–12

    PubMed  CAS  Google Scholar 

  19. Shore RM, Chesney RW, Mazess RB, Rose P, Bargman GJ (1981) Osteopenia in juvenile diabetes. Calcif Tissue Int 33:455–457

    Article  PubMed  CAS  Google Scholar 

  20. Roth J, Prout TE, Goldfine ID (1971) Sulphonylureas: effects in vivo and in vitro. Ann Intern Med 75:607–621

    Google Scholar 

  21. Levin ME, Boisseau VC, Avioli LV (1976) Effects of diabetes mellitus on bone mass in juvenile and adult-onset diabetes. N Engl J Med 294:241–245

    Article  PubMed  CAS  Google Scholar 

  22. Riggs BL, Mann KG (1987) Assessment of bone turnover in osteoporosis using biochemical markers. In: Christiansen C, Johansen JS, Riis BJ (eds) Osteoporosis 1987. Osteopres ApS, Denmark, pp 672–676

    Google Scholar 

  23. Lian JB, Gundberg CM (1988) Osteocalcin. Clin Orthop 226:267–291

    PubMed  CAS  Google Scholar 

  24. Seibold JR, Uitto J, Dorwart BB, Prockop DJ (1985) Collagen synthesis and collagenase activity in dermal fibroblast and digital sclerosis. J Lab Clin Med 105:664–667

    PubMed  CAS  Google Scholar 

  25. Landeros O, Frost HF (1964) Radial rate of osteon closure measured by means of tetracycline labelling. Henry Ford Hosp Med Bull 12:499–507

    Google Scholar 

  26. Goodman WG, Hori MT (1984) Diminished bone formation in experimental diabetes. Diabetes 33:825–831

    PubMed  CAS  Google Scholar 

  27. Aubia J, Serrano S, Marinoso LL, Hojman L, Diez A, Lloveras J, Masramon J (1988) Osteodystrophy of diabetics in chronic dialysis: a histomorphometric study. Calcif Tissue Int 42:297–301

    Article  PubMed  CAS  Google Scholar 

  28. Goldstein S, Littlefield JW, Soeldner JS (1969) Diabetes mellitus and aging: diminished plating efficiency of cultured human fibroblast. Proc Natl Acad Sci USA 64:155–160

    Article  PubMed  CAS  Google Scholar 

  29. Levy-Marchal C, Laborde K, Souberbielle JC, Kindermans C, Gouget B, Sachs CH, Czernichow P (1986) Bone and mineral metabolism in young children with insulin-dependent diabetes mellitus (IDDM). Transplant Proc 15:1501

    Google Scholar 

  30. Avioli LV (1977) Osteoporosis: pathogenesis and therapy. In: Avioli LV, Krane SM (eds) Metabolic bone disease. Academic Press, New York, pp 307–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rico, H., Hernandez, E.R., Cabranes, J.A. et al. Suggestion of a deficient osteoblastic function in diabetes mellitus: The possible cause of osteopenia in diabetics. Calcif Tissue Int 45, 71–73 (1989). https://doi.org/10.1007/BF02561404

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02561404

Key words

Navigation