Skip to main content
Log in

Thermal decomposition of some metal chelates of substituted hydrazopyrazolones

  • Published:
Journal of Thermal Analysis Aims and scope Submit manuscript

Abstract

The thermal dissociation of 1-phenyl-3-methyl-4-(X-phenylhydrazo)-5-pyrazolone metal chelates [M(XPhHyPy)](X=m-OH (I),m-OCH3(II),m-COOH (III),p-CH3 (IV),p-OCH3 (V) orp-COCH3 (VI) was studied by TG, DTG and differential thermal analysis (DTA). A rough sequence of thermal stability, obtained from the peak maximum temperatures, for the various metal chelates was Hg(II)<Cu(II)<Fe(III)<UO2(II). The bonding of the ligands to metal ions was investigated by elemental analysis and infrared spectroscopy. The number and relative energies of nitrate combiantion frequencies are discussed in terms of the complexation of para-substituted hydrazopyrazolone with Th(IV) and UO2(II) metal ions.

Zusammenfassung

Mittels TG, DTG und DTA wurde die thermische Dissoziation der 1-Phenyl-3-methyl-4(x-phenylhydrazo)-5-pyrazolon-Metallchelate [M(x-PhHyPy)](x=m-OH(I),m-OCH3(II),m-COOH(III),p-CH3(IV),p-OCH3(V) undp-COCH3(VI) untesucht. Die anhand der Peakmaxima-Temperaturen erhaltene ungefähre Reihenfolge für die thermische Stabilität lautete: Hg(II) Cu(II) Fe(III) UO2(II). Die Bindung der Liganden an den Metallionen wurde mittels Elementaranalyse und IR-Spektraldaten, untersucht. Außerdem wurde die Anzahl und die relativen Energien von Nitrat-Kombinationsfrequenzen bei der Komplexierung von para-substituiertem Hydrapyrazolon mit Th(IV)- und UO2(II) Metallionen diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. A. El-Shetary, S. L. Stefan, F. I. Zidan and S. B. El-Maraghy, Monatschefte für Chemie, 118 (1987) 1101.

    Article  CAS  Google Scholar 

  2. S. L. Stefan, B. A. El-Shetary W. G. Hanna and S. B. El-Maraghy, Microchemical J., 35 (1987) 51.

    Article  CAS  Google Scholar 

  3. S. L. Stefan, Microchemical J., 35 (1987) 186.

    Article  CAS  Google Scholar 

  4. S. L. Stefan, Microchemical J., 41 (1990) 72.

    Article  CAS  Google Scholar 

  5. F. A. Aly, S. M. Abu-El-Wafa, R. M. Issa and F. A. El-Sayed, Thermochim. Acta, 126 (1988) 235.

    Article  CAS  Google Scholar 

  6. E. A. Heintz, J. Inorg. Nucl. Chem., 21 (1961) 64.

    Article  CAS  Google Scholar 

  7. J. Maslowska and Malicka, J. Thermal Anal, 34 (1988) 3.

    Article  CAS  Google Scholar 

  8. S. R. Lukic, D. M. Petrovic and A. F. Petrovic, J. Thermal Anal, 34 (1988) 1015.

    Article  CAS  Google Scholar 

  9. S. Sitran and D. Fregona, J. Coord. Chem., 20 (1989) 193.

    Article  CAS  Google Scholar 

  10. V. M. Padmanabhan S. C. Saraiya and A. K. Sundaram, J. Inorg. Nucl. Chem., 12 (1960) 356.

    Article  CAS  Google Scholar 

  11. W. Brazyska and S. Karasinski, J. Thermal Anal., 34 (1988) 195.

    Article  Google Scholar 

  12. P. V. Khadikar, D. Apte, B. Amma and P. Suri, Acta Chim. Hung., 126 (1989) 645.

    CAS  Google Scholar 

  13. G. A. El-Inany, K. A. R. Salib S. B. El-Maraghy and S. L. Stefan, Egypt. J. Chem., 27 (1984) 357.

    Google Scholar 

  14. H. A. Dessouki, R. M. Issa and M. M. Moustafa, Acta Chim. Hung., 126 (1969) 653.

    Google Scholar 

  15. D. P. Powell and N. Sheppard, Spectrochim. Acta, 17 (1961) 68.

    Article  CAS  Google Scholar 

  16. L. J. Bellamy, Advances in Infrared Group Frequencies Methnen and Col. Ltd., 1968, p. 52.

  17. J. I. Bullock, J. Inorg. Nucl. Chem., 25 (1967) 2257.

    Article  Google Scholar 

  18. A. B. P. Lever, E. Mantovani and B. S. Ramaswamy, Canad. J. Chem., 49 (1971) 1957.

    Article  CAS  Google Scholar 

  19. M. Goldstein, E. F. Mooney, A. Anderson and H. A. Gebbie, Spectrochim, Acta, 21 (1965) 105.

    Article  CAS  Google Scholar 

  20. R. Whyman and W. E. Hatfield, Inorg. Chem., (1967) 1859.

  21. A. G. Evans, J. C. El-Shetary, B. A. Rowland and H. P. Morgan, J. Coord. Chem., 9 (1979) 19.

    CAS  Google Scholar 

  22. K. Nakamoto, Y. Morimoto and A. E. Martell, J. Am. Chem. Soc., 83 (1961) 4533.

    Article  CAS  Google Scholar 

  23. G. K. T. Conn and C. K. Wu, Trans. Faraday Soc., 34 (1938) 1483.

    Article  CAS  Google Scholar 

  24. H. D. Bist, J. Mol. Spectrosc., 16 (1968) 542.

    Article  Google Scholar 

  25. R. D. Hancock and D. A. Thornton, J. Mol. Structure, 4 (1969) 377.

    Article  CAS  Google Scholar 

  26. M. Mikami, I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 23 Part A. (1967) 1037.

    Article  Google Scholar 

  27. K. Nakamoto and A. E. Martell, J. Chem. Phys. 32 (1960) 588.

    Article  CAS  Google Scholar 

  28. S. Pinchas, B. L. Silver and I. Laulicht, J. Chem. Phys., 46 (1967) 1506.

    Article  CAS  Google Scholar 

  29. S. P. McGlynn J. K. Smith and W. C. Neely, J. Chem. Phys., 35 (1961) 105.

    Article  CAS  Google Scholar 

  30. D. W. Barnum, J. Inorg. Nucl. Chem., 22 (1961) 183.

    Article  CAS  Google Scholar 

  31. D. W. Barnum, J. Inorg. Nucl. Chem., 22 (1961) 221.

    Article  Google Scholar 

  32. J. P. Fackler and F. A. Cotton, Inorg. Chem. 2 (1963) 102.

    Article  CAS  Google Scholar 

  33. A. H. Maki and B. R. McGarvey, J. Chem. Phys., 29 (1958) 31.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefan, S.L. Thermal decomposition of some metal chelates of substituted hydrazopyrazolones. Journal of Thermal Analysis 42, 1299–1312 (1994). https://doi.org/10.1007/BF02546938

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02546938

Key words

Navigation