Skip to main content
Log in

Utilization of 3-ethyl-1(N,N-dimethyl)aminopropylcarbodiimide (EDCI)/1-hydroxybenzotriazole (HOBt) as a polymerizing agent

  • Published:
Letters in Peptide Science Aims and scope Submit manuscript

Abstract

The commonly used coupling reagents in peptide synthesessuch as dicyclohexylcabodiimide, diisopropylcarbodiimide and3-ethyl-1(N,N-dimethyl)aminopropylcarbodiimide with or without1-hydroxybenzotriazole or N-hydroxysuccinimide have been used as polymerizing agents in the synthesis of elastic/plastic protein-based polymers. It was found that 3-ethyl-1(N,N-dimethyl)aminopropylcarbodiimide with 1-hydroxybenzotriazole gave equally good polymers comparable toconventional p-nitrophenol approach. Further, we present here the polymerization and characterization of structural andfunctional properties of poly(Val-Pro-Gly-Val-Gly), which is themost striking repeating sequence in the bovine and porcine elastins. The polymers obtained by both p-nitrophenol and 3-ethyl-1(N,N-dimethyl)aminopropylcarbodiimide approach werecharacterized by carbon-13 and proton nuclear magnetic resonancespectroscopy, differential scanning calorimetry, circular dichroism and fourier transform infrared spectroscopy. These results conclude that poly(Val-Pro-Gly-Val-Gly) obtained by bothmethods were identical in all respects of physical and chemicalproperties indicates that 3-ethyl-1(N,N-dimethyl)aminopropylcarbodiimide with 1-hydroxybenzotriazole method can be conveniently employed to synthesize these polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Urry, D.W., Bioelastics: ‘Bioelastics’ break new ground in the development of biomaterials, Res. and Dev., 30 (1989) 57–64.

    Google Scholar 

  2. Urry, D. W., Parker, T. M., Reid, M. C. and Gowda, D. C., Biocompatibility of the bioelastic materials, poly(GVGVP) and its γ-irradiation cross-linked matrix: Summary of generic biological test results, J. Bioctive Compatible Polym., 6 (1991) 263–282.

    Google Scholar 

  3. Urry, D. W., Gowda, D. C., Harris, C. and Cox, B. A., Development of bioelastic materials as biocompatible, transducible and degradable drug delivery matrices, Am. Chem. Soc. Poly. Chem. Div., 33 (1992) 84–85.

    Google Scholar 

  4. Urry, D. W.: 1992, Molecular machines: How motion and other functions of living organisms can result from reversible chemical changes, Angew. Chem. (German), 105, 859–883; Angew. Chem. Int., Ed. Engl., 32, 819–841.

    Google Scholar 

  5. Urry, D. W., Parker, T. M., Nicol, A., Pattanaik, A., Minehan, D. S., Gowda, D. C., Morrow, C. and McPherson, D. T., The capacity to vary the bioactive role of elastic protein-based polymers, Am. Chem. Soc. Div. Poly. Mat. Sci. and Eng., 66 (1992) 399–402.

    Google Scholar 

  6. Sandberg, L., Leslie, J., Leach, C., Trres, V., Smith, A. and Smith, D., Elastin covalent structure as determined by solidphase amino acid sequence, Pathol. Biol., 33 (1985) 266–274.

    Google Scholar 

  7. Yeh, H., Ornstein-Goldstein, N., Indik, Z., Sheppard, P., Anderson, N., Rosenbloom, J., Cicila, G., Yoon, K. and Rosenbloom, J. C., Sequence variation of bovine elastin mRNA due to alternative splicing, Collagen and Related Research, 7 (1987) 235–247.

    Google Scholar 

  8. Indik, Z., Yeh, H., Ornstein-Goldstien, N., Sheppard, P., Anderson, N., Rosenbloom, J., Peltonen, L. and Rosenbloom, J. C., Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA, J. Proc. Natl. Acad. Sci. USA, 84 (1987) 5680–5684.

    Google Scholar 

  9. Smith, D. W., Sandberg, L. B., Leslie, B. H., Wolt, T. E., Minton, S. T., Myers, B. and Rucker, R. B., Primary structure of a chick tropoelastin peptide: Evidence for a collagen-like amino acid sequence, Biochem. Biophys. Res. Commun., 103 (1981) 880–885.

    Google Scholar 

  10. Sandberg, L. B., Soskel, N. T. and Leslie, J. B., Elastin structure, biosynthesis and relation, N. Engl. J. Med. 304 (1981) 566–579.

    Google Scholar 

  11. Urry, D.W., Free energy transduction in polypeptides and proteins based on inverse temperature transitions, Prog. Biophy. Molec. Biol., 57 (1992) 23–57.

    Google Scholar 

  12. Urry, D. W., Nicol, A., Gowda, D. C., Hoban, L. D., McKee, A., Williams, T., Olsen, D. B. and Cox, B. A., In Charles G. Gebelein, (Ed.), Medical Applications of Bioelastic Materials, Technomic Publishing, Atlanta, Georgia, 1993, pp. 82–103.

    Google Scholar 

  13. Urry, D. W., Nicol, A., McPherson, D. T., Xu, J., Shewry, P. R., Harris, C. M., Parker, T. M. and Gowda, D. C., In Handbook of Biomaterials and Applications, Marcel Dekker Inc., New York, 1995, pp. 2645–2699.

    Google Scholar 

  14. Urry, D. W. and Prasad, K. U., In D. W. Williams (Ed.), Biocompatibility of Tissue Analogues, CRC Press Inc., Boca Raton, Florida, 1985, pp. 89–116.

    Google Scholar 

  15. Prasad, K. U., Iqbal, M. A. and Urry, D. W., Utilization of 1-hydroxybenzotriazole in mixed anhydride coupling reactions, Int. J. Pept. and Protein Res., 25 (1985) 408–413.

    Google Scholar 

  16. Sheehan, J. C. and Hess, G. P., A new method of forming peptide bonds, J. Am. Chem. Soc., 77 (1955) 1067–1068.

    Google Scholar 

  17. Sheehan, J. C., Preston, J. and Cruickshank, P. A., A rapid synthesis of oligopeptide derivatives without isolation of intermediates, J. Am. Chem. Soc., 87 (1965) 2492–2493.

    Google Scholar 

  18. Luan, C. H., Parker, T. M., Gowda, D. C. and Urry, D. W., Hydropohobicity of amino acid residues: Differential scanning calorimetry and synthesis of the aromatic analogues of the polypentapeptides of elastin, Biopolymers, 32 (1992) 1251–1261.

    Google Scholar 

  19. Haris, P. I. and Chapman, D., Does fourier-transformed infrared spectroscopy provide useful information on protein structures?, TIBS, 1992, 328–333.

  20. Jagannadham, M. V., Krishnamurhty, A. S. R., Husain, S. and Nagaraj, R., Conformations of hydrophobic peptides in trifluoroethanol, water and in solid state: A circular dichroism and fourier transform infrared study, Ind. J. Biochem. Biophys., 36 (1999) 422–428.

    Google Scholar 

  21. Reymond, M. T., Huo, S., Duggan, B., Wright, P. E. and Dyson, H. J., Contribution of increased length and intact capping sequences to the conformational preference for helix in a 31-residue peptide from the C terminus of myohemerythrin, Biochemistry, 36 (1997) 5234–5244.

    Google Scholar 

  22. Sonnichsen, F. D., Eyk, J. E. V., Hodges, R. S. and Sykes, B. D., Effect of trifluoroethanol on protein secondary structure: An NMR and CD study using a synthetic actin peptide, Biochemistry, 31 (1992) 8790–8798.

    Google Scholar 

  23. Urry, D. W., Shaw, R. G. and Prasad, K. U., Polypentapeptide of elastin: Temperature dependence of ellipticity and correlation with elastomeric force, Biochem. Biophys. Res. Commun., 130 (1985) 50–57.

    Google Scholar 

  24. Anwer, M. K. and Spatola, A. F., An advantageous method for the rapid removal of hydrogenolysable protecting groups under ambient conditions; Synthesis of leucine-enkephalin, Synthesis, 1980, 929–932.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Channe Gowda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesha Baba, A., Channe Gowda, D. Utilization of 3-ethyl-1(N,N-dimethyl)aminopropylcarbodiimide (EDCI)/1-hydroxybenzotriazole (HOBt) as a polymerizing agent. Letters in Peptide Science 8, 309–318 (2001). https://doi.org/10.1023/A:1016269919210

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016269919210

Navigation