Skip to main content
Log in

Stochastic dynamics and Boltzmann hierarchy. II

  • Published:
Ukrainian Mathematical Journal Aims and scope

Abstract

Stochastic dynamics corresponding to the Boltzmann hierarchy is constructed. The Liouville-Itô equations are obtained, from which we derive the Boltzmann hierarchy regarded as an abstract evolution equation. We construct the semigroup of evolution operators and prove the existence of solutions of the Boltzmann hierarchy in the space of sequences of integrable and bounded functions. On the basis of these results, we prove the existence of global solutions of the Boltzmann equation and the existence of the Boltzmann-Grad limit for an arbitrary time interval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946); see also: N. N. Bogolyubov, Selected Works [in Russian], Vol. 2, Naukova Dumka, Kiev (1970), pp. 99–196.

    Google Scholar 

  2. C. Cercignani, “The Grad limit for a system of soft spheres,” Commun. Pure Appl. Math., 36, 479–494 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  3. O. E. Lanford, “Time evolution of large classical systems,” Lect. Notes Phys., 38 (1975).

  4. V. I. Gerasimenko and D. Ya. Petrina, “Existence of the Boltzmann-Grad limit for infinite systems of hard spheres,” Teor. Mat. Fiz., 83, 92–114 (1990).

    MathSciNet  Google Scholar 

  5. D. Ya. Petrina and V. I. Gerasimenko, “Mathematical problems of statistical mechanics of hard-sphere-particle systems,” Usp. Mat. Nauk, 45, 192–214 (1990).

    MathSciNet  Google Scholar 

  6. D. Ya. Petrina and V. I. Gerasimenko, “Evolution of states of infinite systems in classical statistical mechanics,” Sov. Sci. Rev. Ser. C Math. Phys., 5, 1–60 (1984).

    MathSciNet  Google Scholar 

  7. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, “Thermodynamic limit for solutions of Bogoliubov’s equations,” Sov. Sci. Rev. Ser. C Math. Phys., 7, 280–335 (1987).

    Google Scholar 

  8. D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics. Continuous Systems, Gordon and Breach, New York (1989).

    MATH  Google Scholar 

  9. H. Tanaka, “Probabilistic treatment of the Boltzmann equation of Maxwellian molecules,” Z. Warscheinlichkeitstheor. Verw. Geb., 46, 67–105 (1978).

    Article  MATH  Google Scholar 

  10. A. S. Sznitman, “Equations de type de Boltzmann, spatialement homogenes,” Z. Warscheinlichkeitstheor. Verw. Geb., 66, 559–592 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  11. A. A. Arsen’ev, “On the approximation of a solution of the Boltzmann equation by a solution of Itô stochastic differential equations,” Zh. Vychisl. Mat. Mat. Fiz., 27, 400–410 (1987).

    MathSciNet  Google Scholar 

  12. A. A. Arsen’ev, “Approximation of the Boltzmann equation by stochastic equations,” Zh. Vychisl Mat. Mat. Fiz., 28, 560–567 (1988).

    MATH  MathSciNet  Google Scholar 

  13. A. V. Skorokhod, Stochastic Equations for Complex Systems [in Russian], Nauka, Moscow (1983).

    MATH  Google Scholar 

  14. M. Lachowicz and M. Pulvirenti, “A stochastic particle system modeling the Euler equation,” Arch. Rat. Mech. Anal., 109, 81–93 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Caprino, A. De Masi, E. Presutti, and M. Pulvirenti, “A stochastic particle system modeling the Carleman equation,” J. Statist. Phys., 55, 625–638 (1989).

    Article  MathSciNet  Google Scholar 

  16. M. Lachowicz, “A system of stochastic differential equations modeling the Euler and the Navier-Stokes hydrodynamic equations,” Jpn. J. Industr. Appl. Math., 10, 109–131 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Albeverio, S. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, New York-Berlin (1988).

    MATH  Google Scholar 

  18. V. D. Koshmanenko, Singular Quadratic Forms in the Theory of Perturbations of Self-Adjoint Operators [in Russian], Naukova Dumka, Kiev (1993).

    Google Scholar 

  19. I. M. Gel’fand, M. I. Graev, and N. Ya. Vilenkin, Generalized Functions [in Russian], Nauka, Moscow (1962).

    Google Scholar 

  20. S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  21. C. Cercignani, V. I. Gerasimenko, and D. Ya. Petrina, Many-Particle Dynamics and Kinetic Equations, Kluwer, Dordrecht (1997).

    MATH  Google Scholar 

  22. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer-Verlag, New York (1997).

    Google Scholar 

  23. N. N. Bogolyubov and N. N. Bogolyubov, Jr., Introduction to Statistical Mechanics [in Russian], Nauka, Moscow (1984).

    MATH  Google Scholar 

  24. C. Cercignani, “On the master equation in the space in homogeneous case,” in: G. Pichon (editor), Theories Cinetiques Classiques et Relativistes, Colloq. Int. C. N. R. S. (1975), pp. 209–221.

  25. J. R. Dorfman and M. H. Ernst, “Hard-sphere binary-collision operators,” J. Stat. Phys., 57, 581–593 (1989).

    Article  MathSciNet  Google Scholar 

  26. R. J. Di Perna and P. L. Lions, “Global solutions of Boltzmann’s equation and the entropy inequality,” Arch. Rat. Mech. Anal., 47–55 (1991).

  27. R. J. Di Perna and P. L. Lions, “On the Cauchy problem for Boltzmann equations: Global existence and weak stability,” Ann. Math., 130, 321–366 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrainskii Matematicheskii Zhurnal, Vol. 50, No. 3, pp. 372–387, March, 1998.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrina, D.Y., Petrina, K.D. Stochastic dynamics and Boltzmann hierarchy. II. Ukr Math J 50, 425–441 (1998). https://doi.org/10.1007/BF02528807

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02528807

Keywords

Navigation