Skip to main content
Log in

Placing zeroes and the Kronecker canonical form

  • Published:
Circuits, Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Given a linear time-invariant control system, it is well known that the transmission zeroes are the generalized eigenvalues of a matrix pencil. Adding outputs to place additional zeroes is equivalent to appending rows to this pencil to place new generalized eigenvalues. Adding inputs is likewise equivalent to appending columns. Since both problems are dual to each other, in this paper we only show how to choose the new rows to place the new zeroes in any desired locations. The process involves the extraction of the individual right Kronecker blocks of the pencil, accomplished entirely with unitary transformations. In particular, when adding one new output, i.e., appending a single row, the maximum number of new zeroes that can be placed is exactly the largest right Kronecker index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Berger, R. J. Perry, and H. H. Sun, An algorithm for the assignment of system zeroes,Automatica, 27(3) (1991), pp. 541–544.

    Article  Google Scholar 

  2. Th. Beelen and P. Van Dooren, An improved algorithm for the computation of Kronecker's canonical form of a singular pencil,Linear Algebra & Applications, 105 (1988), pp. 9–65.

    Article  MATH  Google Scholar 

  3. D. L. Boley, Estimating the sensitivity of the algebraic structure of matrix pencils with simple eigenvalue estimates,SIAM J. Matrix Anal., 11 (1990), pp. 632–643.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Emami-Naeini and P. Van Dooren, Computation of zeros of linear multivariable systems,Automatica, 18 (1982), pp. 415–430.

    Article  MATH  Google Scholar 

  5. F. R. Gantmacher,Theory of Matrices, vol. 2, Chelsea, New York, 1959.

    MATH  Google Scholar 

  6. T. K. Kailath,Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

    MATH  Google Scholar 

  7. J. Kautsky, N. K. Nichols, and P. Van Dooren, Robust pole assignment in linear state feedback,Int. J. Control, 41 (1985), pp. 1129–1155.

    MATH  Google Scholar 

  8. B. Kouvaritakis and A. G. J. MacFarlane, Geometric approach to the analysis and synthesis of system zeroes, part I,Int. J. Contr., 23 (1976), pp. 149–166.

    MATH  MathSciNet  Google Scholar 

  9. B. Kouvaritakis and A. G. J. MacFarlane, Geometric approach to the analysis and synthesis of system zeroes, part II: Non-square systems,Int. J. Contr., 23 (1976), pp. 167–181.

    MATH  MathSciNet  Google Scholar 

  10. G. Miminis and C. C. Paige, A direct method for pole assignment of time-invariant multi-input linear systems,Automatica, 24(3) (1988), pp. 343–356.

    Article  MATH  MathSciNet  Google Scholar 

  11. P. Misra, A computational algorithm for squaring up, part I: Zero input-output matrix, InProc. Conf. Dec. Contr., pp. 149–150, December 1992.

  12. P. Van Dooren, The computation of Kronecker's canonical form of a singular pencil,Lin. Alg. & Appl., 27 (1979), pp. 103–141.

    Article  MATH  Google Scholar 

  13. G. Verghese, P. Van Dooren, and T. Kailath, Properties of the system matrix of a generalized state-space system,Int. J. Contr., 30 (1979), pp. 235–243.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boley, D.L., Van Dooren, P. Placing zeroes and the Kronecker canonical form. Circuits Systems and Signal Process 13, 783–802 (1994). https://doi.org/10.1007/BF02523126

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02523126

Keywords

Navigation