Skip to main content
Log in

Linear and non-linear analysis of the surface electrocardiogram during human ventricular fibrillation shows evidence of order in the underlying mechanism

  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Ventricular fibrillation (BF) is a poorly understood yet potentially lethal cardiac arrhythmia. The electrocardiogram (ECG) time series of VF is investigated by comparison of the linear and non-linear features of VF time series and surrogates in which internal correlations have been destroyed. From 40 ECG time series of human VF and 40 surrogate time series, three quantities are evaluated: the percentage of the linear time-frequency distribution (TFD) exceeding a threshold, the non-linear coarsegrained correlation dimension (Dcg), and the percentage of diagonal lines in the non-linear recurrence plot longer than 10 elements (D10). It is found that the mean (SD) percent threshold TFD and Dcg are higher for the surrogates (6.7% (1.3) and 5.3 (0.6)) than the VF time series (5.6% (0.7) and 3.8(0.9)) whereas the mean D10 is higher for the VF time series (49% (13)) than the surrogates (32% (7)). All of these differences are significant (p<0.0001) and indicate greater order in the VF time series than in the surrogates. It is therefore shown that both linear and non-linear signal analysis demonstrate order in the ECG time series of VF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afonso, V. X., andTompkins, W. J. (1995): ‘Detecting ventricular fibrillation,’IEEE Eng. Med. Biol.,13, pp. 152–159

    Article  Google Scholar 

  • Casaleggio, A., Corana, A., Ranjan, R., andThakor, N. V. (1996): ‘Dimensional analysis of the electrical activity in fibrillating isolated hearts’,Int. J. Bifurcation Chaos,6, pp. 1547–1561

    Article  MATH  Google Scholar 

  • Clayton, R. H., Murray, A., Whittam, A. M., andCampbell, R. W. F. (1991): ‘Automatic recording of ventricular fibrillation’,Comput. Cardiol., pp. 685–688

  • Clayton, R. H., Murray, A., Higham, P. D., andCampbell, R. W. F. (1993): ‘Self-terminating ventricular tachyarrhythmias—a diagnostic dilemma?’,Lancet,341, pp. 93–95

    Article  Google Scholar 

  • Clayton, R. H., Murray, A., andCampbell, R. W. F. (1994): ‘Changes in the surface electrocardiogram during the onset of spontaneous ventricular fibrillation in man’,Eur. Heart J.,15, pp. 184–188

    Google Scholar 

  • Clayton, R. H., Campbell, R. W. F., andMurray, A. (1998): ‘Characteristics of multichannel ECG recordings during human ventricular tachyarrhythmias’,IEEE Eng. Med. Biol.,17, pp. 39–44

    Article  Google Scholar 

  • Cohen, L. (1989): ‘Time-frequency distributions—a review’,Proc. IEEE,77, pp. 941–981

    Article  Google Scholar 

  • Dzwonczyk, R., Brown, C. G., andWerman, H. A. (1990): ‘The median frequency of the ECG during ventricular fibrillation: Its use in an algorithm for estimating the duration of cardiac arrest’,IEEE Trans.,BME-37, pp. 640–646

    Google Scholar 

  • Eggenreich, U., Fleischmann, P. H., Stark, G., andWach, P. (1996): ‘Effects of propafenone on the median frequency of ventricular fibrillation in Langendorff perfused guinea-pig hearts’,Cardiovasc. Res.,31, pp. 926–931

    Google Scholar 

  • Garfinkel, A., Chen, P.-S., Walter, D. O., Karagueuzian, H. S., Kogan, B., Evans, S. J., Karpoukhin, M., Hwang, C., Uchida, T., Nwasokwa, O., Sager, P., andWeiss, J. N. (1997): ‘Quasiperiodicity and chaos in cardiac fibrillation’,J. Clin. Invest.,99, pp. 305–314

    Article  Google Scholar 

  • Grassberger, P., andProcaccia, I. (1983): ‘Measuring the strangeness of strange attractors’,Physica D,9, pp. 189–208

    Article  MATH  MathSciNet  Google Scholar 

  • Griffith, T. M. (1996): ‘Temporal chaos in the microcirculation’,Cardiovasc. Res.,31, pp. 342–358

    Google Scholar 

  • Hastings, H. M., Evans, S. J., Quan, W., Chong, M. L., andNwasokwa, O. (1996): ‘Non-linear dynamics in ventricular fibrillation’,Proc. Nat. Acad. Sci.,93, pp. 10495–10499

    Article  Google Scholar 

  • Herbschleb, J. N., Heethaar, R. M., Tweel, I. V. D., Zimmerman, A. N. E., andMeijler, F. L. (1979): ‘Signal analysis of ventricular fibrillation’,Comput. Cardiol., pp. 49–54

  • Hlawatsch, F., andBoudreaux-Bartels, G. F. (1992): ‘Linear and quadratic time-frequency signal representations’,IEEE Signal Process. Mag., pp. 21–67

  • Hoekstra, B. P. T., Diks, C. G. H., Allessie, M. A., andDegoede, J. (1995): ‘Nonlinear analysis of epicardial atrial electrograms of electrically induced atrial fibrillation in man’,J. Cardiovasc. Electrophysiol.,6, pp. 419–440

    Article  Google Scholar 

  • Holden, A. V., Poole, M. J., andTucker, J. V. (1995): ‘Reconstructing the heart’,Chaos Solitons Fractals,5, pp. 691–710

    Article  MATH  Google Scholar 

  • Hoyer, D., Bauer, R., Walter, B., andZweiner, U. (1998): ‘Estimation of nonlinear couplings on the basis of complexity and predictability-a new method applied to cardiorespiratory coordination’,IEEE Trans.,BME-45, pp. 545–552

    Google Scholar 

  • Kaplan, D., andCohen, R. (1990): ‘Is fibrillation chaos?’,Circ. Res.,67, pp. 886–892

    Google Scholar 

  • Martin, W., andFlandrin, P. (1985): ‘Wigner-Ville analysis of nonstationary processes’,IEEE Trans.,ASSP-33, pp. 1461–1469

    Google Scholar 

  • Moe, G. K., Rheinboldt, W. C., andAbildskov, J. A. (1964): ‘A computer model of atrial fibrillation’,Am. Heart J.,67, pp. 200–220

    Article  Google Scholar 

  • Panfilov, A. V., andHolden, A. V. (1997): ‘Computational biology of the heart’ (John Wiley & Sons, Chichester)

    MATH  Google Scholar 

  • Ravelli, F., andAntolini, R. (1990): ‘Analysis of the ventricular fibrillation ECG with methods from nonlinear dynamics’,Comput. Cardiol., pp. 501–504

  • Rosenstein, M. T., Collins, J. J., andLuca, C. J. D. (1994): ‘Reconstruction expansion as a geometry-based framework for choosing proper delay times’,Physica D,73, pp. 82–98

    Article  MathSciNet  Google Scholar 

  • Stewart, A. J., Allen, J. D., andAdgey, A. A. J. (1992): ‘Frequency analysis of ventricular fibrillation and resuscitation success,’Quart. J. Med.,85, pp. 761–769

    Google Scholar 

  • Swartz, J. F., Jones, J. L., andFletcher, R. D. (1993): ‘Characterization of ventricular fibrillation based on action potential morphology in the human heart’,Circ.,87, pp. 1907–1914

    Google Scholar 

  • Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., andFarmer, J. D. (1992): ‘Testing for nonlinearity in time series: the method of surrogate data’,Physica D,58, pp. 77–94

    Article  Google Scholar 

  • Webber, C. L., andZbilut, J. P. (1994): ‘Dynamical assessment of physiological systems and states using recurrence plot strategies’,J. Appl. Physiol.,76, pp. 965–973

    Google Scholar 

  • Wiggers, C. J. (1940): ‘The mechanism and nature of ventricular fibrillation’,Am. Heart J.,20, pp. 399–412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clayton, R.H., Murray, A. Linear and non-linear analysis of the surface electrocardiogram during human ventricular fibrillation shows evidence of order in the underlying mechanism. Med. Biol. Eng. Comput. 37, 354–358 (1999). https://doi.org/10.1007/BF02513312

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02513312

Keywords

Navigation