Skip to main content
Log in

Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment)

  • Published:
Russian Physics Journal Aims and scope

Abstract

A short high-power pulse of ionizing radiation creates a high concentration of nonequilibrium electrons and holes in a dielectric. They quickly lose their energy, generating a multiplicity of secondary quasiparticles: electron—hole pairs, excitons, plasmons, phonons of all types, and others. When the kinetic energy of an electron becomes less that some value EΔ≈(1.3-2)Eg it loses the ability to perform collisional ionization and electron excitations of the dielectric medium. Such an electron is said to be ionization-passive. It relaxes to the bottom of the lower conduction band by emitting phonons. Similarly a hole becomes ionization-passive when it “floats up” above some level EH and loses the ability for Auger ionization of the dielectric medium. It continues to float upward to the ceiling of the upper valance band only by emitting phonons. The concentrations of ionization-passive electrons and holes are larger by several orders of magnitude than those of the active electrons and holes and consequently make of a far larger contribution to many kinetic processes such as luminescence. Intraband and interband quantum transitions make the greatest contribution to the fundamental (independent of impurities and intrinsic defects) electromagnetic radiation of ionization-passive electrons and holes. Consequently the brightest types of purely fundamental luminescence of strongly nonequilibrium electrons and holes are intraband and interband luminescence. These forms of luminescence, discovered relatively recently, carry valuable information on the high-energy states of the electrons in the conduction band and of the holes in the valence band of a dielectric. Experimental investigations of these types of luminescence were made, mainly on alkali halide crystals which were excited by nanoseconal pulses of high-current-density electrons and by two-photon absorption of the ultraviolet harmonics of pulsed laser radiation beams of nanosecond and picosecond duration. The present article gives the results of theoretical calculations of the spectra and other characteristics of intraband electron and interband hole luminescence which are compared with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. L. Kuusmann, P. Kh. Liblik, and Ch. B. Lushchik, Pis'ma Zh. Éksp. Teor. Fiz.,21, 161 (1975).

    Google Scholar 

  2. D. I. Vaisburd and S. V. Kharitonova, Izv. Vyssh. Uchebn. Zaved. Fiz., No. 12, 103 (1995).

    Google Scholar 

  3. M. L. Taiirov and Z. A. Zhumambekov, Zh. Prikl. Spektrosk.,59, Nos 3–4, 350 (1993).

    Google Scholar 

  4. N. G. Van Kampen,Stochastic Processes in Physics and Chemistry [in Russian], Vysshaya Shkola, Moscow (1990).

    MATH  Google Scholar 

  5. D. I. Vaisburd,Dissertation for Doctorate in Physical and Mathematical Sciences [in Russian], Moscow (1984).

  6. L. D. Landau and E. M. Lifshitz,Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Pergamon Press, Oxford (1977).

    Google Scholar 

  7. V. L. Ginsburg,Theoretical Physics and Astrophysics [in Russian], Nauka, Moscow (1975), p. 412.

    Google Scholar 

  8. D. I. Vaisburd, Voprosi At. Nauki Tekh. Ser. Fiz. Radiats. Pobrezh. Radiats. Materialovedenie,3, 103 (1984).

    Google Scholar 

  9. E. Fermi,Notes on Quantum Mechanics, University of Chicago Press, Chicago, IL (1961).

    Google Scholar 

  10. D. I. Vaisburd, B. N. Semin, É. G. Tavanov, et al.,High-Temperature Solid-State Electronics, [in Russian], Nauka, Novosibirsk (1982).

    Google Scholar 

  11. A. L. Bardenshtein, D. I. Vaisburd, and V. P. Karateev [in Russian], to the Editor of the Journal “Izvesitya Vysshikh Uchebnykh Zavedenii, Fizika”, Tomsk (1991); deposited in VINITI, No. 402, June 7, 1991.

  12. N. O. Lipari and A. B. Kunz, Phys. Rev. B,3, No. 2, 491 (1971).

    Article  ADS  Google Scholar 

  13. M. A. Élango, Tr. Inst. Fiz. Astron. Akad. Nauk Est.,38, 28 (1970).

    Google Scholar 

  14. A. G. Vaisburd and D. I. Vaisburd, Int. J. Radiat. Appl. Instrum. Part D., Nuclear Tracks and Radiation Measurements,20, No. 2, 315 (1992).

    Article  MathSciNet  Google Scholar 

  15. L. V. Tarasov,Introduction to Quantum Optics [in Russian], Vysshaya Shkola, Moscow (1987), p. 304.

    Google Scholar 

  16. G. D. Alkhazov, Zh. Tekh. Fiz.,40, No. 1, 97 (1970).

    Google Scholar 

  17. W. F. Miller and R. L. Platzman, Proc. Phys. Soc. A,70, 299 (1957).

    Article  MATH  ADS  Google Scholar 

  18. L. Vriens, Phys. Rev.,141, 88 (1966).

    Article  ADS  Google Scholar 

  19. H. A. Bethe,Intermediate Quantum Mechanics, 1st ed., Benjamin, New York (1964).

    Google Scholar 

  20. D. I. Vaisburd, P. A. Pal'yanov, and B. N. Semin, Dokl. Ross. Akad. Nauk,333, 452 (1993).

    Google Scholar 

  21. Y. Onodera, J. Phys. Soc. Jpn.,25, 469 (1968).

    Article  ADS  Google Scholar 

  22. T. H. DiStefano and W. Spicer, Phys. Rev. B,7, 1554 (1973).

    Article  ADS  Google Scholar 

  23. D. I. Vaisburd, B. N. Semin, E. S. Serobyan, and V. A. Trofimov, Prib. Tekh. Éksp., No. 6, 135 (1986).

    Google Scholar 

  24. D. I. Vaisburd, B. N. Semin, É. G. Tavanov, and V. T. Shkatov, Izv. Akad. Nauk SSSR Ser. Fiz.,40, 2404 (1976).

    Google Scholar 

  25. D. I. Vaisburd and B. N. Semin, Pis'ma Zh. Éksp. Teor. Fiz.,92, 197 (1980).

    Google Scholar 

  26. D. I. Vaisburd, B. N. Semin, V. T. Shkatov, et al., Izv. Akad. Naul SSSR, Ser. Fiz.,38, 1281 (1974).

    Google Scholar 

  27. K. K. Rebane,Elementary Theory of the Vibrational Structure of the Spectra of Impurity Centers [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  28. K. K. Rebane and V. V. Khizhnyakov,Resonant Secondary Luminescence of Impurity Centers in Crystals [in Russian], Mir, Moscow (1978).

    Google Scholar 

  29. I. Yu. Tekhver and V. V. Khizhnyakov, Zh. Éksp. Teor. Fiz.,69, No. 2, 529 (1975).

    Google Scholar 

  30. D. I. Vaisburd, Proc. Int. Conf. on Radiation Physics of Semiconductors and Related Materials, 1979, University Press, Tbilisi (1980), pp. 198–210.

    Google Scholar 

  31. D. Curie,Luminescence in Crystals, Wiley, New York (1963).

    Google Scholar 

  32. M. Ikezawa and T. Kojima, J. Phys. Soc. Jpn.,27, No. 6, 1551 (1969).

    Article  ADS  Google Scholar 

  33. R. Deich, M. Karklina, and L. Nagli, Solid State Commun.,71, 859 (1989).

    Article  ADS  Google Scholar 

  34. D. I. Vaisburd, P. A. Pal'yanov, B. N. Semin, and O. M. Shumskii, Dokl. Ross. Akad. Nauk,336, 39 (1994).

    Google Scholar 

  35. É. D. Aluker, V. V. Gavrilov, R. G. Deich, and S. A. Chernov, Pis'ma Zh. Éksp. Teor. Fiz.,47, 116 (1988).

    Google Scholar 

  36. U. Rossler, Phys. Status Solidi,34, 207 (1970).

    Google Scholar 

  37. D. I. Vaisburd and B. N. Semin, Izv. Ross. Akad. Nauk Ser. Phys.,56, 103–115 (1992).

    Google Scholar 

  38. D. I. Vaisburd and B. N. Semin, Dokl. Akad. Nauk SSSR,254, 1112 (1980).

    Google Scholar 

Download references

Authors

Additional information

Institute of High-Current Electronics, Sibrian Branch of the Russian Academy of Sciences, Polytechnic University, Tomsk. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 13–41, November, 1997.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaisburd, D.I., Kharitonova, S.V. Two types of fundamental luminescence of ionization-passive electrons and holes in optical dielectrics—Intraband-electron and interband-hole luminescence (theoretical calculation and comparison with experiment). Russ Phys J 40, 1037–1060 (1997). https://doi.org/10.1007/BF02508940

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508940

Keywords

Navigation