Skip to main content
Log in

A gas of Brownian particles in statistical dynamics

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider a large number of particles on a one-dimensional latticel Z in interaction with a heat particle; the latter is located on the bond linking the position of the particle to the point to which it jumps. The energy of a single particle is given by a potentialV(x), xZ. In the continuum limit, the classical version leads to Brownian motion with drift. A quantum version leads to a local drift velocity which is independent of the applied force. Both these models obey Einstein's relation between drift, diffusion, and applied force. The system obeys the first and second laws of thermodynamics, with the time evolution given by a pair of coupled non linear heat equations, one for the density of the Brownian particles and one for the heat occupation number; the equation for a tagged Brownian particle can be written as a stochastic differential equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme gefordete Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,Annalen der Physik 17:549–560 (1905). Translated into English in:The Collected Papers of Albert Einstein 2, by Anna Beck and Peter Havas, Princeton University Press, 1989.

    MATH  ADS  Google Scholar 

  2. R. F. Streater,Statistical Dynamics, Imperial College Press, 1995.

  3. K. Schwarzschild,Göttinger Nachrichten, Math. Phys. Klasse, p. 41 (1906).

  4. R. F. Streater, Statistical Dynamics and Information Geometry, pp. 117–131 inGeometry and Nature, Eds. H. Nencka and J.-P. Bourguignon, Contemporary Mathematics Vol. 203, 1997, Amer. Math. Soc.

  5. R. F. Streater, Information Geometry and Reduced Quantum Description,Reports in Mathematical Physics 38:419–436 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  6. M. S. Green, Markoff Random Processes and the Statistical Mechanics of Time-Dependent Phenomena,Journal of Chemical Phys. 20:1281 (1952); ditto II,ibid Journal of Chemical Phys. 22:398–413 (1954).

    Article  Google Scholar 

  7. S. Koseki and R. F. Streater, The Statistical Dynamics of Activity-led Reactions,Open Systems and Information Dynamics, (Torun),2:77–94 (1993).

    Article  MATH  Google Scholar 

  8. I. E. Segal, Foundations of the Theory of Infinite-dimensional Systems, II,Canadian Journal of Mathematics 13:1–18 (1961).

    MATH  Google Scholar 

  9. R. Haag,Local Quantum Physics: Fields, Particles, Algebras, second printing, Springer-Verlag, 1993.

  10. A. Einstein, Zur Quantentheorie der Strahlung,Physikalische Zeitschrift 18:121 (1917). Translated into English in: B. L. van der Waerden,Sources of Quantum Mechanics, Dover, New York, 1969, pp. 28–32.

    ADS  Google Scholar 

  11. S. Chandrasekhar,Radiative Transfer, (Clarendon Press, Oxford, 1950), p. 8 and 288.

    MATH  Google Scholar 

  12. S. Chandrasekhar,Introduction to the Study of Stella Structure, Second Edition, Dover, New York, 1967; p. 190, Eq. (35).

    Google Scholar 

  13. S.-i. Amari,Differential Geometrical Methods in Statistics, Lecture Notes in Statistics, 28, Springer-Verlag, 1985.

  14. R. F. Streater, Dynamics of Brownian Particles in a Potential, submitted toJ. Mathematical Phys., 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Streater, R.F. A gas of Brownian particles in statistical dynamics. J Stat Phys 88, 447–469 (1997). https://doi.org/10.1007/BF02508479

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02508479

Key words

Navigation