Skip to main content
Log in

Tensile and flexural creep rupture tests on partially-damaged concrete specimens

  • Scientific Reports
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Three series of novel tensile and flexural creep tests on partially-damaged concrete specimens were carried out in order to gain some insight into creep crack growth and failure of strain-softening materials. In the tests, each specimen was initially loaded to a given point in the descending branch and thus had a lower load-carrying capacity than that at the peak-point. Then, the specimen was unloaded and reloaded to sustain a load which was from 70% to 95% of its current load-carrying capacity. Experimental creep curves display a three-stage process, consisting of primary, secondary and tertiary stages, with a decreasing, constant and increasing creep rate, respectively. The secondary stage dominates the whole failure lifetime, whereas both the secondary and tertiary stages are important in terms of creep deformation. Failure life-time seems to be more sensitive to the change of load level in flexural tests rather than in tensile tests. The decrease in load-carrying capacity due to damage tends to result in a shorter failure lifetime and a lower critical load level for creep rupture. The descending branch of the static load-deflection or load-CMOD curve may be used as an envelope criterion for creep fracture.

Résumé

Trois séries d'essais innovants de fluage à la traction et à la flexion ont été effectuées sur des éprouvettes de béton partiellement endommagées pour étudier la propagation de la fissuration et la rupture des matériaux radoucis. Chaque éprouvette a d'abord été chargée jusqu'à un point donné de la branche descendante, de manière à ce que sa capacité de charge soit inférieure à la charge maximale. Ensuite, l'éprouvette a été déchargée et rechargée pour supporter une charge entre 70% et 95% de sa capacité de charge existante. Les courbes expérimentales du fluage révèlent un processus en trois phases: primaire, secondaire et tertiaire, ayant une vitesse de fluage respectivement décroissante, constante et croissante. La phase secondaire domine pour la durée de vie jusqu'à la rupture, tandis que les phases secondaire et tertiaire sont importantes pour la déformation de fluage. La durée de vie jusqu'à la rupture semble être plus sensible au changement du niveau de charge dans les essais de flexion que dans les essais de traction. La réduction de la capacité de charge due à l'endommagement semble entraîner une plus courte durée de vie jusqu'à la rupture et un niveau inférieur de charge critique pour la rupture de fluage. La branche descendante des courbes statiques chargefléchissement ou charge-CMOD peut être utilisée comme critère enveloppe pour la rupture de fluage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kanninen, M. F. and Popelar, C. H., ‘Advanced Fracture Mechanics’, (Oxford University Press, New York, USA, 1985).

    MATH  Google Scholar 

  2. Shah, S. P. and Chandra, S., ‘Fracture of concrete subjected to cyclic and sustained loading’,J. ACI 67 (1970) 816–825.

    Google Scholar 

  3. Mindess, S. and Nadeau, J. S., ‘Effect of loading rate on the flexural strength of cement and mortar’,American Ceramic Society Bulletin 56 (1977) 429–430.

    Google Scholar 

  4. Mindess, S., ‘Rate of loading effects on the fracture of cementitious materials’ in ‘Application of Fracture Mechanics to Cementitious Composites’, edited by S. P. Shah (Martinus Nijhoff Publishers, USA, 1985) 617–636.

    Google Scholar 

  5. Tait, R. B., ‘Fatigue and Fracture of Cement Mortar’, Ph.D. Thesis, the University of Cape Town, Republic of South Africa, 1984.

    Google Scholar 

  6. Wittmann, F. H., ‘Influence of time on crack formation and failure of concrete’, in ‘Application of Fracture Mechanics to Cementitious Composites’, edited by S. P. Shah (Martinus Nijhoff Publishers, USA, 1985) 593–615.

    Google Scholar 

  7. Hillerborg, A., Modeer, M. and Petersson, P. E., ‘Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements’,Cem. & Concr. Res. 6 (1976) 773–781.

    Article  Google Scholar 

  8. Elfgren, L., ‘Fracture Mechanics of Concrete Structures: from Theory to Practice’, (Chapman and Hall, UK, 1989).

    Google Scholar 

  9. Carpinteri, A., ‘Application of Fracture Mechanics to Reinforced Concrete’ (Elsevier Science Publishers Ltd., New York, USA, 1992).

    Google Scholar 

  10. Carpinteri, A., Valente, S., Ferrara, G. and Imperato, L., ‘Experimental and numerical fracture modelling of a gravity dam’, in ‘Fracture Mechanics of Concrete Structures’, edited by Z. P. Bažant (Elsevier Applied Science, USA, 1992) 351–360.

    Google Scholar 

  11. Zhou, F. P., ‘Time-Dependent Crack Growth and Fracture in Concrete’, Ph.D. Thesis, TVBM-1011, University of Lund, Sweden, 1992.

    Google Scholar 

  12. Zhou, F. P., ‘Cracking analysis and size effect in creep rupture of concrete’, in ‘Creep and Shrinkage of Concrete’, edited by Z. P. Bažant and I. Carol (E & FN Spon, UK, 1993) 407–412.

    Google Scholar 

  13. Carpinteri, A., Valente, S. and Zhou, F. P., ‘Creep crack propagation in concrete structures subjected to constant loads’, Research Report, Contract No. A634/93 (Dept. of Structural Engineering, Politecnico di Torino, Italy, 1994).

    Google Scholar 

  14. RILEM Technical Committee 50-FMC, RILEM Draft Recommendation, ‘Determination of the fracture energy of mortar and concrete by means of three point bending tests on notched beams’,Mater. Struct. 18 (1985) 285–290.

    Article  Google Scholar 

  15. Reinhardt, H. W. and Cornelissen, H. W. A., ‘Sustained tensile tests on concrete’,Baustoff 85 (1985) Bauverlag, Wiesbaden, 162–167.

    Google Scholar 

  16. Al-Kubaisy, M. A. and Young, A.G., ‘Failure of concrete under sustained tension’,Cem. Concr. Res. 27 (1975) 171–178.

    Google Scholar 

  17. Domone, P. L., ‘Uniaxial tensile creep and failure of concrete’,Magazine of Concrete Research 26 (1974) 144–152.

    Google Scholar 

  18. Aassved Hansen, E., ‘Influence of sustained load on the fracture energy and the fracture zone of concrete’, in ‘Fracture Processes in Concrete, Rock and Ceramics’, edited by J. G. M. van Mier, J. G. Rots and A. Bakker (E & FN Spon, UK, 1991) 829–838.

    Google Scholar 

  19. Karsan, I. D. and Jirsa, J. O., ‘Behaviour of concrete under compressive loadings’,J. of Structural Division 95 (1969) 2543–2563.

    Google Scholar 

  20. Goodman, R. E., ‘Introduction to Rock Mechanics’ (John Wiley & Sons, USA, 1980).

    Google Scholar 

  21. Shkoukani, H., ‘Behaviour of concrete under concentric and eccentric sustained tensile loading’,Darmstadt Concrete 4 (1989) 223–234.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Editorial note Prof. A. Carpinteri is a RILEM Senior Member. He was awarded the Robert l'Hermite Medal in 1982 for his outstanding research work. Prof. Carpinteri is involved in the work of RILEM Technical Committees 147-FMB on Fracture Mechanics applications to anchorage and Bond and 148-SSC on Test methods for the Strain Softening response in Concrete, and participates in the Editorial Group of 090-FMA on Fracture Mechanics of Concrete-Applications. Professors A. Carpinteri, S. Valente and F. P. Zhou work at the Politecnico di Torino, Italy, a RILEM Titular Member. Dr. G. Ferrara is a RILEM Senior Member. He also participates in the work of TC 148-SSC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpinteri, A., Valente, S., Zhou, F.P. et al. Tensile and flexural creep rupture tests on partially-damaged concrete specimens. Mat. Struct. 30, 269–276 (1997). https://doi.org/10.1007/BF02486351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02486351

Keywords

Navigation