Skip to main content
Log in

Transport of organic fluids through concrete

  • Technical Session
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The absorption of fluids in concrete is influenced by various parameters such as the surface tension and dynamic viscosity of the fluid, and also the porosity, pore size distribution and the interconnection of the pores in concrete. In addition, chemical reactions between the penetrating fluid and concrete may occur, which affect the absorption behaviour. Chemical reactions can cause deviations from the square-root-of-time relation and a reduction of sorptivity. Both are observed if using water or ethylene glycol as testing fluids. The deviation from the square-root-of-time relation is caused by the dissolving of Ca(OH)2 from the cement matrix by the absorbed fluid. In the case of water, the reduction of the sorptivity is due to rehydration and wetting expansion.

If a fluid is being absorbed in concrete, the effective porosity is smaller than the available porosity. The greater the surface tension of the fluid, the greater the measured effective porosity. This can be explained by trapped air inside the pores, which cannot get out and is being compressed by the capillary pressure, either in dead-end pores or due to fingering of the penetrating fluid. Experimental results on sequential absorption of two different fluids in concrete can only be explained if a trapped pore volume is assumed.

Résumé

L'absorption des fluides dans le béton est influencée par divers paramètres tels la tension superficielle et la viscosité dynamique du fluide, ainsi que la porosité, la répartition du diamètre des pores et l'interconnexion des pores dans le béton. Des réactions chimiques entre le fluide qui pénètre et le béton peuvent se produire et modifier le comportement d'absorption. Ces réactions chimiques peuvent créer des écarts de la relation racine-carrée-du-temps et une réduction de la sorptivité. Les deux effets sont observés lorsqu'on utilise de l'eau ou de l'éthylène glycol comme fluides d'essai. L'écart de la relation racine-carrée-du-temps résulte de la dissolution par le fluide absorbée du Ca(OH)2 de la matrice du béton. Dans le cas de l'eau, la réduction de la sorptivité résulte de la réhydratation ou de la dilatation d'humidification.

Si un fluide est absorbé dans le béton, la porosité effective est moindre que la porosité disponible. Plus grande sera la tension superficielle du fluide, plus grande sera la porosité effective mesurée. Ceci peut s'expliquer par l'air piégé dans les pores, qui ne peut pas s'échapper et qui est comprimé par la tension capillaire, soit dans des pores «cul-de-sac» ou en raison d'une digitation lors de la pénétration du fluide. Des résultats expérimentaux concernant l'absorption séquentielle de deux fluides différents dans le béton ne peuvent être expliqués que si l'on suppose un volume des pores piégés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DAfStb-Richtlinie, ‘Betonbau beim Umgang mit wassergefährdenden Stoffen’ (Beuth Verlag, Berlin, 1996).

    Google Scholar 

  2. Reinhardt, H.W. (ed), ‘Penetration and Permeability of Concrete—Barriers to organic and contaminating fluids’, State-of-the-art report of the RILEM Technical Committee 146-TCF (Chapman & Hall, London, in press).

  3. Sosoro, M., ‘Modell zur Vorhersage des Eindringverhaltens von organischen Flüssigkeiten in Beton’, DAfStb bulletin, No. 446 (Beuth Verlag, Berlin, 1995).

    Google Scholar 

  4. Gummerson, R.J., Hall, C., Hoff, W.D., Hawkes, R., Holland, G.N. and Moore, W.S., ‘Unsaturated water flow within porous materials observed by NMR imaging’,Nature 281 (1979) 56–57.

    Article  Google Scholar 

  5. Kiessl, K. and Krus, M., ‘Messung von Wassergehalten und Feuchtetransportvorgängen in Baustoffen mittels kernmagnetischer Resonanz’, IBP-Mitteilung 148 Fraunhofer-Institut für Bauphysik (1987).

  6. Krus, M. and Kiessl, K., ‘NMR-Messung kapillarer Flüssigkeitsbewegungen in porösen Gesteinen und Ableitung neuer Kapillartransport-Kenngrößen’, in ‘Jahresberichte Steinzerfall—Steinkonservierung’ (Verlag Ernst & Sohn, Berlin, 1991) 39–45.

    Google Scholar 

  7. Volkwein, A., ‘Untersuchungen über das Eindringen von Wasser und Chlorid in Beton’, Doctoral thesis, Technical University of Munich (1991).

  8. Sosoro, M. and Reinhardt, H.W., ‘Thermal imaging of hazardous organic fluids in concrete’,Mater. Struct. 28 (1995) 526–533.

    Article  Google Scholar 

  9. Hall, C., ‘Barrier performance of concrete: A review of fluid transport theory’,Mater. Struct. 27 (1994) 291–306.

    Article  Google Scholar 

  10. Wenzel, R. N., ‘Resistance of solid surfaces to wetting by water’, Industrial and Engineering Chemistry, Industrial Edition 28 (1936) 988–994.

    Google Scholar 

  11. Hazlett, R.D., ‘Fractal applications: Wettability and contact angle’,Journal of Colloid and Interface Science 137 (2) (1990) 527–533.

    Article  Google Scholar 

  12. Hall, C., Hoff, W.D., Taylor, S.C., Wilson, M.A., Yoon, B.G., Reinhardt, H.W., Sosoro, M., Meredith, P. and Donald, M., ‘Water anomaly in capillary liquid absorption by cement-based materials’,Journal of Materials Science Letters 14 (1995) 1178–1181.

    Article  Google Scholar 

  13. Sosoro, M. and Reinhardt, H.W., ‘Effect of moisture in concrete on fluid absorption’, in: Jennings, H., Kropp, J., Scrivener, K. (eds), ‘The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability’ (Kluwer Academic Publishers, Dordrecht, 1996) 443–456.

    Google Scholar 

  14. Lide, D.R. (ed), ‘Handbook of Chemistry and Physics, 72nd edn (CRC Press, Boca Raton, 1991).

    Google Scholar 

  15. Landolt-Börnstein, ‘Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik’, part II-3 (Springer-Verlag, Heidelberg, 1956).

    Google Scholar 

  16. Günter, M. and Hilsdorf, H.K., ‘Stresses due to physical and chemical actions in polymer coatings on a concrete substrate’, in ‘Adhesion between Polymers and Concrete’, RILEM Symposium, Paris (Chapman & Hall, London, 1986) 8–21.

    Google Scholar 

  17. Günter, M. and Hilsdorf, H.K., ‘Influence of physical and chemical interactions between a concrete substrate and organic surface coatings on bond strength’, Massivbau Baustofftechnologie Karlsruhe No. 6 (1988) 161–174.

    Google Scholar 

  18. Sosoro, M., ‘Liquid displacement in concrete by capillary forces’,Otto Graf Journal 6 (1995) 11–34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dr. Massimo Sosoro was awarded the Robert L'Hermite Medal for 1997 at the RILEM Annual Meeting in Zurich, Switzerland on 25 September 1997. This paper is the final version of the lecture he presented on that occasion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosoro, M. Transport of organic fluids through concrete. Mat. Struct. 31, 162–169 (1998). https://doi.org/10.1007/BF02480390

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02480390

Keywords

Navigation