Skip to main content
Log in

Terminal and intermediate segment lenghts in neuronal trees with finite length

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A basic but neglected property of neuronal trees is their finite length. This finite length restricts the length of a segment to a certain maximum. The implications of the finite length of the tree with respect to the segment length distributions of terminal and intermediate segments are shown by means of a stochastic model. In the model it is assumed that branching is governed by a Poisson process. The model shows that terminal segments are expected to be longer than intermediate segments. Terminal and intermediate segments are expected to decrease in length with incrasing centrifugal order. The results are compared with data fromin vivo pyramidal cells from rat brain and tissue cultured ganglion cells from chicken. A good agreement between data and model was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Berry, M. and P. Bradley 1976. The growth of the dendritic trees of Purkinje cells in the cerebellum of the rat.Brain Res. 112, 1–35.

    Article  Google Scholar 

  • Borchert, R. and P. B. Tomlinson. 1984. Architecture and crown geometry inTabebuia rosea (Bignoniaceae).Am. J. Bot. 71(7), 958–969.

    Article  Google Scholar 

  • Bray, D. 1973. Branching patterns of individual sympathic neurons in culture.J. Cell Biol. 56, 702–712.

    Article  Google Scholar 

  • Buettner, H. M. and R. N. Pittman. 1991. Quantitative effects of laminin concentration on neurite outgrowthin vitro.Dev. Biol. 145, 266–276.

    Article  Google Scholar 

  • Crawford, J. W. and I. M. Young. 1990. A multiple scaled fractal tree.J. theor. Biol. 145, 199–206.

    Article  Google Scholar 

  • Connor, J. R., S. E. Beban, J. H. Melone, A. Yuen and M. C. Diamond. 1982. A quantitative golgi study in the occipital cortex of the pyramidal dendritic topology of old adult rats from social or isolated environments.Brain Res. 251, 39–44.

    Article  Google Scholar 

  • Cox, D. R. and P. A. W. Lewis. 1966.The Statistical Analysis of Series of Events. London: Methuen.

    MATH  Google Scholar 

  • Dawant, B., M. Levin and A. S. Popel. 1986. Effect of dispersion of vessel diameters and lengths in stochastic networks.Microvasc. Res. 31, 203–222.

    Article  Google Scholar 

  • Ellison, A. M. and K. J. Niklas. 1988. Branching patterns ofSalicornia europea (Chenopodiaceae) at different successional stages: A comparison of theoretical and real plants.Am. J. Bot. 75(4), 501–512.

    Article  Google Scholar 

  • Fisher, J. B. and H. Honda. 1979. Branch geometry and effective leaf area: A study of Terminalibranching pattern. 1. Theoretical trees.Am. J. Bot. 66(6), 645–655.

    Article  Google Scholar 

  • Howard, A. D. 1971. Simulation of stream networks by headward growth and branching.Geogr. Anal. 3, 29–50.

    Article  Google Scholar 

  • Larkmann, A. U. 1991. Dendritic morphology of pyramidal neurones of the visual cortex of rat. I: Branching patterns.J. comp. Neur. 306, 307–319.

    Article  Google Scholar 

  • Mood, A. M., F. A. Graybill and D. C. Boes. 1974.Introduction to the Theory of Statistics. London: McGraw-Hill.

    MATH  Google Scholar 

  • Nowakowski, R. S., N. L. Hayes and M. D. Egger. 1990. A simple stochastic model of neuritic elongation accurately describes the distribution of dendritic segment lengths in dorsal horn cells.Soc. Neurosci. Abstr 16, 1126.

    Google Scholar 

  • Scheidegger, A. E. 1966. Stochastic branching processes and the law of stream orders.Water Resources Res. 2, 199–203.

    Google Scholar 

  • Smart, J. S. 1972. Channel networks.Adv. Hydrosci. 8, 305–346.

    Google Scholar 

  • Smart, J. S. and C. Werner. 197. Applications of the random model of drainage basin composition.Earth Surf. Proc. 1, 219–233.

    Google Scholar 

  • Stuart, A. and J. K. Ord. 1987.Kendall's Advanced Theory of Statistics, Vol. I. London: Ch. Grifin.

    MATH  Google Scholar 

  • Ten Hoopen, M. and H. A. Reuver. 1970. Probabilistic analysis of dendritic branching patterns of cortical neurons.Kybernetic 6, 176–188.

    Article  Google Scholar 

  • Ten Hoopen, M. and H. A. Reuver. 1971. Growth patterns of neuronal dendrites, an attempted probabilistic description.Kybernetic 8, 234–239.

    Article  Google Scholar 

  • Uyling, H. B. M., K. Kuypers, M. C. Diamond and W. A. M. Veltman. 1978. Effects of differential environments on plasticity of dendrites of cortical pyramidal neurons in adult rats.Exp. Neur. 62, 658–677.

    Article  Google Scholar 

  • Uyling, H. B. M., A. Ruiz-Marcos and J. Van Pelt. 1986. The metric analysis of three dimensional dendritic tree patterns: a methodological review.J. Neurosc. Meth. 18, 127–151.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Veen, M.P., van Pelt, J. Terminal and intermediate segment lenghts in neuronal trees with finite length. Bltn Mathcal Biology 55, 277–294 (1993). https://doi.org/10.1007/BF02460884

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02460884

Keywords

Navigation