Skip to main content
Log in

Subcellular distribution of compounds in biosystems

  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

Using plausible assumptions a description of the distribution of externally added low molecular weight solutes in individual subcellular regions of biosystems is reduced to a compartmental system of specific structure having, in general, only numerical solutions. Frequently occurring application of biologically active substances in low doses, however, elicits the conditions (i.e. undirectional membrane transport involving accumulation, instantaneous and linear binding to macromolecules and metabolism obeying first order kinetics) that enable one to solve the system explicitly. Equations have been derived, describing the time course of drug concentration in any subcellular phase of arbitrary biosystem having membranes of similar composition, including tissues with a cellular structure (degenerate case). Accuracy of the description is tested on the relationship between physicochemical and biological properties of drugs, bioactivity being used to monitor the concentration in the receptor region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Aarons, L., D. Bell, R. Waigh and Q. Ye. 1982. “Parabolic Structure-Activity Relationships: A Simple Pharmacokinetic Model.”J. Pharm. Pharmacol. 34, 746–749.

    Google Scholar 

  • Atkins, G. L. 1969.Multicompartment Models for Biological Systems. London: Methuen.

    Google Scholar 

  • Baláž, Š., A. Kuchár, J. Dřevojánek, J. Adamcová and A. Vrbanová. 1988b. “Liposome/Saline Partition Coefficients of Low Molecular Weight Solutes by Gel Chromatography.”J. biochem. biophys. Meth. (in press).

  • — and E. Šturdík, 1984. “Passive Transport and Lipophilicity. Closed Model of Drug Distribution.” InQSAR in Design of Bioactive Compounds. M. Kuchař (Ed.). Barcelona: Prous.

    Google Scholar 

  • — and —. 1985. “Lipophilicity and Drug Disposition.” InQSAR in Toxicology and Xenobiochemistry. M. Tichý (Ed.), Amsterdam: Elsevier.

    Google Scholar 

  • —— and —. 1986. “Kinetics of Unidirectional Transport in Multimembrane Systems as Influenced by Binding to Macromolecules.”Biophys. Chem. 24, 135–142.

    Article  Google Scholar 

  • —— and —. 1987. “Kinetics of Non-equilibrium Metabolism-coupled Passive Transport in Biosystems.”Gen. Physiol. Biophys. 6, 65–77.

    Google Scholar 

  • ——, I. Dibus, L. Ebringer, L. Štibrányi and M. Rosenberg. 1985b. “Quantitative Relationships between Lipophilicity and Mutagenic Effects of N-Substituted Amides of 3-(5-Nitro-2-Furyl)-Acrylic Acid onSalmonella typhimurium.”Chem.-biol. Interact 55, 93–108.

    Google Scholar 

  • ——, M. Hrmová, M. Breza and T. Liptaj 1984a. “Kinetics of Drug Partitioning in Closed 4-Compartment Systems and its Application to QSAR.”Eur. J. med. Chem. 19, 167–171.

    Google Scholar 

  • —— M. Rosenberg, J. Augustín and B. Škárka. 1988a. “Kinetics of Drug Activities as Influenced by their Physicochemical Properties: Antibacterial Effects of Alkylating 2-Furylethylenes.”J. theor. Biol.,125, 115–134.

    Google Scholar 

  • —— and B. Škárka 1984b. “Mathematical Description of Nonequilibrium Passive Transport in Biosystems.”Collect. Czechoslov. chem. Commun. 49, 1382–1389.

    Google Scholar 

  • —— and M. Tichý. 1985a. “Hansch Approach and Kinetics of Drug Activities.”Quant. Struct.-Act. Relat. 4, 77–81.

    Google Scholar 

  • Benson, S. W. 1960.The Foundations of Chemical Kinetics. New York: McGraw-Hill.

    Google Scholar 

  • Collander, R. 1951. “The Partition of Organic Compounds between Higher Alcohols and Water.”Acta chem. scand. 5, 774–780.

    Article  Google Scholar 

  • Cooper, E. R., B. Berner and R. C. Bruce, 1981. “Kinetic Analysis of Relationship between Partition Coefficient and Biological Response.”J. pharm. Sci. 70, 57–59.

    Google Scholar 

  • Dearden, J. C. and M. S. Townend. 1978. “Digital Computer Simulation of the Drug Transport Process.” InQuantitative Structure-Activity Analysis, R. Franke and P. Oehme (Eds). Berlin: Akademie-Verlag.

    Google Scholar 

  • Eigen, M. 1968 “Kinetics of Reaction Control and Information Transfer in Enzymes and Nucleic Acids.” InNobel Symposium on Fast Reactions and Primary Processes in Chemical Kinetics, S. Claesson (Ed.). Stockholm: Almquist and Wiksell.

    Google Scholar 

  • Fletcher, R. and M. J. D. Powell. 1963. “A Rapidly Convergent Descent Method for Minimization.”Comput. J. 6, 163–168.

    MATH  MathSciNet  Google Scholar 

  • Hansch, C. and J. M. Clayton. 1973. “Lipophilic Character and Biological Activity of Drugs. II—The Parabolic Case.”J. pharm. Sci. 62, 1–21.

    Google Scholar 

  • — and W. J. Dunn III. 1972. “Linear Relationships between Lipophilic Character and Biological Activity of Drugs.”J. pharm. Sci. 61, 1–18.

    Google Scholar 

  • Jacquez, J. A. 1972.Compartmental Analysis in Biology and Medicine. Amsterdam: Elsevier.

    Google Scholar 

  • Kramer, C. R., L. Beck and H. Arndt. 1982. “Quantitative Struktur-Aktivitäts-Beziehungen für die Wachstumshemmung vonChlorella vulgaris-Suspensionen durch 4-Alkylsemicarbazide.”Biochem. Physiol. Pflanzen 177, 192–196.

    Google Scholar 

  • Kubinyi, H. 1979. “Lipophilicity and Biological Activity. Drug Transport and Drug Distribution in Model Systems and in Biological Systems.”Arzneim.-Forsch. 29, 1067–1080.

    Google Scholar 

  • Penniston, J. T., L. Beckett, O. L. Bentley and C. Hansch. 1969. “Passive Permeation of Organic Compounds through Biological tissue: a Non-steady-state Theory.”Mol. Pharmacol. 5, 333–341.

    Google Scholar 

  • Rescigno, A. and G. Segre. 1966.Drug and Tracer Kinetics. Waltham: Blaisdell.

    Google Scholar 

  • Wagner, J. G. 1975.Fundamentals of Clinical Pharmacokinetics. Hamilton: Hamilton Press.

    Google Scholar 

  • Wolf, M. G., G. Heinzel, F. W. Koss and G. Bozler. 1977. “Modellentwicklung in der Pharmokokinetik. II. Verallgemeinerte Theoretische Darstellung der Vollständigen Integration Linearer Kompartmentmodelle Beliebiger Struktur.”Arzneim-Forsch 27, 900–904.

    Google Scholar 

  • Zwolinski, B. J., H. Eyring and C. E. Reese. 1949. “Diffusion and Membrane Permeability.”J. phys. Colloid Chem. 53, 1436–1453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baláž, Š., Šturdík, E. & Augustín, J. Subcellular distribution of compounds in biosystems. Bltn Mathcal Biology 50, 367–378 (1988). https://doi.org/10.1007/BF02459706

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02459706

Keywords

Navigation